Struct tokio::net::TcpSocket [−][src]
pub struct TcpSocket { /* fields omitted */ }
A TCP socket that has not yet been converted to a TcpStream
or
TcpListener
.
TcpSocket
wraps an operating system socket and enables the caller to
configure the socket before establishing a TCP connection or accepting
inbound connections. The caller is able to set socket option and explicitly
bind the socket with a socket address.
The underlying socket is closed when the TcpSocket
value is dropped.
TcpSocket
should only be used directly if the default configuration used
by TcpStream::connect
and TcpListener::bind
does not meet the required
use case.
Calling TcpStream::connect("127.0.0.1:8080")
is equivalent to:
use tokio::net::TcpSocket; use std::io; #[tokio::main] async fn main() -> io::Result<()> { let addr = "127.0.0.1:8080".parse().unwrap(); let socket = TcpSocket::new_v4()?; let stream = socket.connect(addr).await?; Ok(()) }
Calling TcpListener::bind("127.0.0.1:8080")
is equivalent to:
use tokio::net::TcpSocket; use std::io; #[tokio::main] async fn main() -> io::Result<()> { let addr = "127.0.0.1:8080".parse().unwrap(); let socket = TcpSocket::new_v4()?; // On platforms with Berkeley-derived sockets, this allows to quickly // rebind a socket, without needing to wait for the OS to clean up the // previous one. // // On Windows, this allows rebinding sockets which are actively in use, // which allows “socket hijacking”, so we explicitly don't set it here. // https://docs.microsoft.com/en-us/windows/win32/winsock/using-so-reuseaddr-and-so-exclusiveaddruse socket.set_reuseaddr(true)?; socket.bind(addr)?; let listener = socket.listen(1024)?; Ok(()) }
Setting socket options not explicitly provided by TcpSocket
may be done by
accessing the RawFd
/RawSocket
using AsRawFd
/AsRawSocket
and
setting the option with a crate like socket2
.
Implementations
impl TcpSocket
[src]
impl TcpSocket
[src]pub fn new_v4() -> Result<TcpSocket>
[src]
Create a new socket configured for IPv4.
Calls socket(2)
with AF_INET
and SOCK_STREAM
.
Returns
On success, the newly created TcpSocket
is returned. If an error is
encountered, it is returned instead.
Examples
Create a new IPv4 socket and start listening.
use tokio::net::TcpSocket; use std::io; #[tokio::main] async fn main() -> io::Result<()> { let addr = "127.0.0.1:8080".parse().unwrap(); let socket = TcpSocket::new_v4()?; socket.bind(addr)?; let listener = socket.listen(128)?; Ok(()) }
pub fn new_v6() -> Result<TcpSocket>
[src]
Create a new socket configured for IPv6.
Calls socket(2)
with AF_INET6
and SOCK_STREAM
.
Returns
On success, the newly created TcpSocket
is returned. If an error is
encountered, it is returned instead.
Examples
Create a new IPv6 socket and start listening.
use tokio::net::TcpSocket; use std::io; #[tokio::main] async fn main() -> io::Result<()> { let addr = "[::1]:8080".parse().unwrap(); let socket = TcpSocket::new_v6()?; socket.bind(addr)?; let listener = socket.listen(128)?; Ok(()) }
pub fn set_reuseaddr(&self, reuseaddr: bool) -> Result<()>
[src]
Allow the socket to bind to an in-use address.
Behavior is platform specific. Refer to the target platform’s documentation for more details.
Examples
use tokio::net::TcpSocket; use std::io; #[tokio::main] async fn main() -> io::Result<()> { let addr = "127.0.0.1:8080".parse().unwrap(); let socket = TcpSocket::new_v4()?; socket.set_reuseaddr(true)?; socket.bind(addr)?; let listener = socket.listen(1024)?; Ok(()) }
pub fn reuseaddr(&self) -> Result<bool>
[src]
Retrieves the value set for SO_REUSEADDR
on this socket
Examples
use tokio::net::TcpSocket; use std::io; #[tokio::main] async fn main() -> io::Result<()> { let addr = "127.0.0.1:8080".parse().unwrap(); let socket = TcpSocket::new_v4()?; socket.set_reuseaddr(true)?; assert!(socket.reuseaddr().unwrap()); socket.bind(addr)?; let listener = socket.listen(1024)?; Ok(()) }
pub fn set_reuseport(&self, reuseport: bool) -> Result<()>
[src]
Allow the socket to bind to an in-use port. Only available for unix systems (excluding Solaris & Illumos).
Behavior is platform specific. Refer to the target platform’s documentation for more details.
Examples
use tokio::net::TcpSocket; use std::io; #[tokio::main] async fn main() -> io::Result<()> { let addr = "127.0.0.1:8080".parse().unwrap(); let socket = TcpSocket::new_v4()?; socket.set_reuseport(true)?; socket.bind(addr)?; let listener = socket.listen(1024)?; Ok(()) }
pub fn reuseport(&self) -> Result<bool>
[src]
Allow the socket to bind to an in-use port. Only available for unix systems (excluding Solaris & Illumos).
Behavior is platform specific. Refer to the target platform’s documentation for more details.
Examples
use tokio::net::TcpSocket; use std::io; #[tokio::main] async fn main() -> io::Result<()> { let addr = "127.0.0.1:8080".parse().unwrap(); let socket = TcpSocket::new_v4()?; socket.set_reuseport(true)?; assert!(socket.reuseport().unwrap()); socket.bind(addr)?; let listener = socket.listen(1024)?; Ok(()) }
pub fn set_send_buffer_size(&self, size: u32) -> Result<()>
[src]
Sets the size of the TCP send buffer on this socket.
On most operating systems, this sets the SO_SNDBUF
socket option.
pub fn send_buffer_size(&self) -> Result<u32>
[src]
Returns the size of the TCP send buffer for this socket.
On most operating systems, this is the value of the SO_SNDBUF
socket
option.
Note that if set_send_buffer_size
has been called on this socket
previously, the value returned by this function may not be the same as
the argument provided to set_send_buffer_size
. This is for the
following reasons:
- Most operating systems have minimum and maximum allowed sizes for the send buffer, and will clamp the provided value if it is below the minimum or above the maximum. The minimum and maximum buffer sizes are OS-dependent.
- Linux will double the buffer size to account for internal bookkeeping
data, and returns the doubled value from
getsockopt(2)
. As perman 7 socket
:Sets or gets the maximum socket send buffer in bytes. The kernel doubles this value (to allow space for bookkeeping overhead) when it is set using
setsockopt(2)
, and this doubled value is returned bygetsockopt(2)
.
pub fn set_recv_buffer_size(&self, size: u32) -> Result<()>
[src]
Sets the size of the TCP receive buffer on this socket.
On most operating systems, this sets the SO_RCVBUF
socket option.
pub fn recv_buffer_size(&self) -> Result<u32>
[src]
Returns the size of the TCP receive buffer for this socket.
On most operating systems, this is the value of the SO_RCVBUF
socket
option.
Note that if set_recv_buffer_size
has been called on this socket
previously, the value returned by this function may not be the same as
the argument provided to set_send_buffer_size
. This is for the
following reasons:
- Most operating systems have minimum and maximum allowed sizes for the receive buffer, and will clamp the provided value if it is below the minimum or above the maximum. The minimum and maximum buffer sizes are OS-dependent.
- Linux will double the buffer size to account for internal bookkeeping
data, and returns the doubled value from
getsockopt(2)
. As perman 7 socket
:Sets or gets the maximum socket send buffer in bytes. The kernel doubles this value (to allow space for bookkeeping overhead) when it is set using
setsockopt(2)
, and this doubled value is returned bygetsockopt(2)
.
pub fn local_addr(&self) -> Result<SocketAddr>
[src]
Get the local address of this socket.
Will fail on windows if called before bind
.
Examples
use tokio::net::TcpSocket; use std::io; #[tokio::main] async fn main() -> io::Result<()> { let addr = "127.0.0.1:8080".parse().unwrap(); let socket = TcpSocket::new_v4()?; socket.bind(addr)?; assert_eq!(socket.local_addr().unwrap().to_string(), "127.0.0.1:8080"); let listener = socket.listen(1024)?; Ok(()) }
pub fn bind(&self, addr: SocketAddr) -> Result<()>
[src]
Bind the socket to the given address.
This calls the bind(2)
operating-system function. Behavior is
platform specific. Refer to the target platform’s documentation for more
details.
Examples
Bind a socket before listening.
use tokio::net::TcpSocket; use std::io; #[tokio::main] async fn main() -> io::Result<()> { let addr = "127.0.0.1:8080".parse().unwrap(); let socket = TcpSocket::new_v4()?; socket.bind(addr)?; let listener = socket.listen(1024)?; Ok(()) }
pub async fn connect(self, addr: SocketAddr) -> Result<TcpStream>
[src]
Establish a TCP connection with a peer at the specified socket address.
The TcpSocket
is consumed. Once the connection is established, a
connected TcpStream
is returned. If the connection fails, the
encountered error is returned.
This calls the connect(2)
operating-system function. Behavior is
platform specific. Refer to the target platform’s documentation for more
details.
Examples
Connecting to a peer.
use tokio::net::TcpSocket; use std::io; #[tokio::main] async fn main() -> io::Result<()> { let addr = "127.0.0.1:8080".parse().unwrap(); let socket = TcpSocket::new_v4()?; let stream = socket.connect(addr).await?; Ok(()) }
pub fn listen(self, backlog: u32) -> Result<TcpListener>
[src]
Convert the socket into a TcpListener
.
backlog
defines the maximum number of pending connections are queued
by the operating system at any given time. Connection are removed from
the queue with TcpListener::accept
. When the queue is full, the
operating-system will start rejecting connections.
This calls the listen(2)
operating-system function, marking the socket
as a passive socket. Behavior is platform specific. Refer to the target
platform’s documentation for more details.
Examples
Create a TcpListener
.
use tokio::net::TcpSocket; use std::io; #[tokio::main] async fn main() -> io::Result<()> { let addr = "127.0.0.1:8080".parse().unwrap(); let socket = TcpSocket::new_v4()?; socket.bind(addr)?; let listener = socket.listen(1024)?; Ok(()) }
pub fn from_std_stream(std_stream: TcpStream) -> TcpSocket
[src]
Converts a std::net::TcpStream
into a TcpSocket
. The provided
socket must not have been connected prior to calling this function. This
function is typically used together with crates such as socket2
to
configure socket options that are not available on TcpSocket
.
Examples
use tokio::net::TcpSocket; use socket2::{Domain, Socket, Type}; #[tokio::main] async fn main() -> std::io::Result<()> { let socket2_socket = Socket::new(Domain::IPV4, Type::STREAM, None)?; let socket = TcpSocket::from_std_stream(socket2_socket.into()); Ok(()) }