1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
//! Spans represent periods of time in which a program was executing in a
//! particular context.
//!
//! A span consists of [fields], user-defined key-value pairs of arbitrary data
//! that describe the context the span represents, and a set of fixed attributes
//! that describe all `tracing` spans and events. Attributes describing spans
//! include:
//!
//! - An [`Id`] assigned by the subscriber that uniquely identifies it in relation
//!   to other spans.
//! - The span's [parent] in the trace tree.
//! - [Metadata] that describes static characteristics of all spans
//!   originating from that callsite, such as its name, source code location,
//!   [verbosity level], and the names of its fields.
//!
//! # Creating Spans
//!
//! Spans are created using the [`span!`] macro. This macro is invoked with the
//! following arguments, in order:
//!
//! - The [`target`] and/or [`parent`][parent] attributes, if the user wishes to
//!   override their default values.
//! - The span's [verbosity level]
//! - A string literal providing the span's name.
//! - Finally, between zero and 32 arbitrary key/value fields.
//!
//! [`target`]: ../struct.Metadata.html#method.target
//!
//! For example:
//! ```rust
//! use tracing::{span, Level};
//!
//! /// Construct a new span at the `INFO` level named "my_span", with a single
//! /// field named answer , with the value `42`.
//! let my_span = span!(Level::INFO, "my_span", answer = 42);
//! ```
//!
//! The documentation for the [`span!`] macro provides additional examples of
//! the various options that exist when creating spans.
//!
//! The [`trace_span!`], [`debug_span!`], [`info_span!`], [`warn_span!`], and
//! [`error_span!`] exist as shorthand for constructing spans at various
//! verbosity levels.
//!
//! ## Recording Span Creation
//!
//! The [`Attributes`] type contains data associated with a span, and is
//! provided to the [`Subscriber`] when a new span is created. It contains
//! the span's metadata, the ID of [the span's parent][parent] if one was
//! explicitly set, and any fields whose values were recorded when the span was
//! constructed. The subscriber, which is responsible for recording `tracing`
//! data, can then store or record these values.
//!
//! # The Span Lifecycle
//!
//! ## Entering a Span
//!
//! A thread of execution is said to _enter_ a span when it begins executing,
//! and _exit_ the span when it switches to another context. Spans may be
//! entered through the [`enter`], [`entered`], and [`in_scope`] methods.
//!
//! The [`enter`] method enters a span, returning a [guard] that exits the span
//! when dropped
//! ```
//! # use tracing::{span, Level};
//! let my_var: u64 = 5;
//! let my_span = span!(Level::TRACE, "my_span", my_var);
//!
//! // `my_span` exists but has not been entered.
//!
//! // Enter `my_span`...
//! let _enter = my_span.enter();
//!
//! // Perform some work inside of the context of `my_span`...
//! // Dropping the `_enter` guard will exit the span.
//!```
//!
//! <div class="information">
//!     <div class="tooltip compile_fail" style="">&#x26a0; &#xfe0f;<span class="tooltiptext">Warning</span></div>
//! </div><div class="example-wrap" style="display:inline-block"><pre class="compile_fail" style="white-space:normal;font:inherit;">
//!     <strong>Warning</strong>: In asynchronous code that uses async/await syntax,
//!     <code>Span::enter</code> may produce incorrect traces if the returned drop
//!     guard is held across an await point. See
//!     <a href="struct.Span.html#in-asynchronous-code">the method documentation</a>
//!     for details.
//! </pre></div>
//!
//! The [`entered`] method is analogous to [`enter`], but moves the span into
//! the returned guard, rather than borrowing it. This allows creating and
//! entering a span in a single expression:
//!
//! ```
//! # use tracing::{span, Level};
//! // Create a span and enter it, returning a guard:
//! let span = span!(Level::INFO, "my_span").entered();
//!
//! // We are now inside the span! Like `enter()`, the guard returned by
//! // `entered()` will exit the span when it is dropped...
//!
//! // ...but, it can also be exited explicitly, returning the `Span`
//! // struct:
//! let span = span.exit();
//! ```
//!
//! Finally, [`in_scope`] takes a closure or function pointer and executes it
//! inside the span:
//!
//! ```
//! # use tracing::{span, Level};
//! let my_var: u64 = 5;
//! let my_span = span!(Level::TRACE, "my_span", my_var = &my_var);
//!
//! my_span.in_scope(|| {
//!     // perform some work in the context of `my_span`...
//! });
//!
//! // Perform some work outside of the context of `my_span`...
//!
//! my_span.in_scope(|| {
//!     // Perform some more work in the context of `my_span`.
//! });
//! ```
//!
//! <div class="information">
//!     <div class="tooltip ignore" style="">ⓘ<span class="tooltiptext">Note</span></div>
//! </div>
//! <div class="example-wrap" style="display:inline-block">
//! <pre class="ignore" style="white-space:normal;font:inherit;">
//! <strong>Note</strong>: Since entering a span takes <code>&self</code<, and
//! <code>Span</code>s are <code>Clone</code>, <code>Send</code>, and
//! <code>Sync</code>, it is entirely valid for multiple threads to enter the
//! same span concurrently.
//! </pre></div>
//!
//! ## Span Relationships
//!
//! Spans form a tree structure — unless it is a root span, all spans have a
//! _parent_, and may have one or more _children_. When a new span is created,
//! the current span becomes the new span's parent. The total execution time of
//! a span consists of the time spent in that span and in the entire subtree
//! represented by its children. Thus, a parent span always lasts for at least
//! as long as the longest-executing span in its subtree.
//!
//! ```
//! # #[macro_use] extern crate tracing;
//! # use tracing::Level;
//! // this span is considered the "root" of a new trace tree:
//! span!(Level::INFO, "root").in_scope(|| {
//!     // since we are now inside "root", this span is considered a child
//!     // of "root":
//!     span!(Level::DEBUG, "outer_child").in_scope(|| {
//!         // this span is a child of "outer_child", which is in turn a
//!         // child of "root":
//!         span!(Level::TRACE, "inner_child").in_scope(|| {
//!             // and so on...
//!         });
//!     });
//!     // another span created here would also be a child of "root".
//! });
//!```
//!
//! In addition, the parent of a span may be explicitly specified in
//! the `span!` macro. For example:
//!
//! ```rust
//! # #[macro_use] extern crate tracing;
//! # use tracing::Level;
//! // Create, but do not enter, a span called "foo".
//! let foo = span!(Level::INFO, "foo");
//!
//! // Create and enter a span called "bar".
//! let bar = span!(Level::INFO, "bar");
//! let _enter = bar.enter();
//!
//! // Although we have currently entered "bar", "baz"'s parent span
//! // will be "foo".
//! let baz = span!(parent: &foo, Level::INFO, "baz");
//! ```
//!
//! A child span should typically be considered _part_ of its parent. For
//! example, if a subscriber is recording the length of time spent in various
//! spans, it should generally include the time spent in a span's children as
//! part of that span's duration.
//!
//! In addition to having zero or one parent, a span may also _follow from_ any
//! number of other spans. This indicates a causal relationship between the span
//! and the spans that it follows from, but a follower is *not* typically
//! considered part of the duration of the span it follows. Unlike the parent, a
//! span may record that it follows from another span after it is created, using
//! the [`follows_from`] method.
//!
//! As an example, consider a listener task in a server. As the listener accepts
//! incoming connections, it spawns new tasks that handle those connections. We
//! might want to have a span representing the listener, and instrument each
//! spawned handler task with its own span. We would want our instrumentation to
//! record that the handler tasks were spawned as a result of the listener task.
//! However, we might not consider the handler tasks to be _part_ of the time
//! spent in the listener task, so we would not consider those spans children of
//! the listener span. Instead, we would record that the handler tasks follow
//! from the listener, recording the causal relationship but treating the spans
//! as separate durations.
//!
//! ## Closing Spans
//!
//! Execution may enter and exit a span multiple times before that span is
//! _closed_. Consider, for example, a future which has an associated
//! span and enters that span every time it is polled:
//! ```rust
//! # extern crate tracing;
//! # extern crate futures;
//! # use futures::{Future, Poll, Async};
//! struct MyFuture {
//!    // data
//!    span: tracing::Span,
//! }
//!
//! impl Future for MyFuture {
//!     type Item = ();
//!     type Error = ();
//!
//!     fn poll(&mut self) -> Poll<Self::Item, Self::Error> {
//!         let _enter = self.span.enter();
//!         // Do actual future work...
//! # Ok(Async::Ready(()))
//!     }
//! }
//! ```
//!
//! If this future was spawned on an executor, it might yield one or more times
//! before `poll` returns `Ok(Async::Ready)`. If the future were to yield, then
//! the executor would move on to poll the next future, which may _also_ enter
//! an associated span or series of spans. Therefore, it is valid for a span to
//! be entered repeatedly before it completes. Only the time when that span or
//! one of its children was the current span is considered to be time spent in
//! that span. A span which is not executing and has not yet been closed is said
//! to be _idle_.
//!
//! Because spans may be entered and exited multiple times before they close,
//! [`Subscriber`]s have separate trait methods which are called to notify them
//! of span exits and when span handles are dropped. When execution exits a
//! span, [`exit`] will always be called with that span's ID to notify the
//! subscriber that the span has been exited. When span handles are dropped, the
//! [`drop_span`] method is called with that span's ID. The subscriber may use
//! this to determine whether or not the span will be entered again.
//!
//! If there is only a single handle with the capacity to exit a span, dropping
//! that handle "closes" the span, since the capacity to enter it no longer
//! exists. For example:
//! ```
//! # #[macro_use] extern crate tracing;
//! # use tracing::Level;
//! {
//!     span!(Level::TRACE, "my_span").in_scope(|| {
//!         // perform some work in the context of `my_span`...
//!     }); // --> Subscriber::exit(my_span)
//!
//!     // The handle to `my_span` only lives inside of this block; when it is
//!     // dropped, the subscriber will be informed via `drop_span`.
//!
//! } // --> Subscriber::drop_span(my_span)
//! ```
//!
//! However, if multiple handles exist, the span can still be re-entered even if
//! one or more is dropped. For determining when _all_ handles to a span have
//! been dropped, `Subscriber`s have a [`clone_span`] method, which is called
//! every time a span handle is cloned. Combined with `drop_span`, this may be
//! used to track the number of handles to a given span — if `drop_span` has
//! been called one more time than the number of calls to `clone_span` for a
//! given ID, then no more handles to the span with that ID exist. The
//! subscriber may then treat it as closed.
//!
//! # When to use spans
//!
//! As a rule of thumb, spans should be used to represent discrete units of work
//! (e.g., a given request's lifetime in a server) or periods of time spent in a
//! given context (e.g., time spent interacting with an instance of an external
//! system, such as a database).
//!
//! Which scopes in a program correspond to new spans depend somewhat on user
//! intent. For example, consider the case of a loop in a program. Should we
//! construct one span and perform the entire loop inside of that span, like:
//!
//! ```rust
//! # #[macro_use] extern crate tracing;
//! # use tracing::Level;
//! # let n = 1;
//! let span = span!(Level::TRACE, "my_loop");
//! let _enter = span.enter();
//! for i in 0..n {
//!     # let _ = i;
//!     // ...
//! }
//! ```
//! Or, should we create a new span for each iteration of the loop, as in:
//! ```rust
//! # #[macro_use] extern crate tracing;
//! # use tracing::Level;
//! # let n = 1u64;
//! for i in 0..n {
//!     let span = span!(Level::TRACE, "my_loop", iteration = i);
//!     let _enter = span.enter();
//!     // ...
//! }
//! ```
//!
//! Depending on the circumstances, we might want to do either, or both. For
//! example, if we want to know how long was spent in the loop overall, we would
//! create a single span around the entire loop; whereas if we wanted to know how
//! much time was spent in each individual iteration, we would enter a new span
//! on every iteration.
//!
//! [fields]: ../field/index.html
//! [Metadata]: ../struct.Metadata.html
//! [`Id`]: struct.Id.html
//! [verbosity level]: ../struct.Level.html
//! [`span!`]: ../macro.span.html
//! [`trace_span!`]: ../macro.trace_span.html
//! [`debug_span!`]: ../macro.debug_span.html
//! [`info_span!`]: ../macro.info_span.html
//! [`warn_span!`]: ../macro.warn_span.html
//! [`error_span!`]: ../macro.error_span.html
//! [`clone_span`]: ../subscriber/trait.Subscriber.html#method.clone_span
//! [`drop_span`]: ../subscriber/trait.Subscriber.html#method.drop_span
//! [`exit`]: ../subscriber/trait.Subscriber.html#tymethod.exit
//! [`Subscriber`]: ../subscriber/trait.Subscriber.html
//! [`Attributes`]: struct.Attributes.html
//! [`enter`]: struct.Span.html#method.enter
//! [`entered`]: struct.Span.html#method.entered
//! [`in_scope`]: struct.Span.html#method.in_scope
//! [`follows_from`]: struct.Span.html#method.follows_from
//! [guard]: struct.Entered.html
//! [parent]: #span-relationships
pub use tracing_core::span::{Attributes, Id, Record};

use crate::stdlib::{
    cmp, fmt,
    hash::{Hash, Hasher},
    marker::PhantomData,
    mem,
    ops::Deref,
};
use crate::{
    dispatcher::{self, Dispatch},
    field, Metadata,
};

/// Trait implemented by types which have a span `Id`.
pub trait AsId: crate::sealed::Sealed {
    /// Returns the `Id` of the span that `self` corresponds to, or `None` if
    /// this corresponds to a disabled span.
    fn as_id(&self) -> Option<&Id>;
}

/// A handle representing a span, with the capability to enter the span if it
/// exists.
///
/// If the span was rejected by the current `Subscriber`'s filter, entering the
/// span will silently do nothing. Thus, the handle can be used in the same
/// manner regardless of whether or not the trace is currently being collected.
#[derive(Clone)]
pub struct Span {
    /// A handle used to enter the span when it is not executing.
    ///
    /// If this is `None`, then the span has either closed or was never enabled.
    inner: Option<Inner>,
    /// Metadata describing the span.
    ///
    /// This might be `Some` even if `inner` is `None`, in the case that the
    /// span is disabled but the metadata is needed for `log` support.
    meta: Option<&'static Metadata<'static>>,
}

/// A handle representing the capacity to enter a span which is known to exist.
///
/// Unlike `Span`, this type is only constructed for spans which _have_ been
/// enabled by the current filter. This type is primarily used for implementing
/// span handles; users should typically not need to interact with it directly.
#[derive(Debug)]
pub(crate) struct Inner {
    /// The span's ID, as provided by `subscriber`.
    id: Id,

    /// The subscriber that will receive events relating to this span.
    ///
    /// This should be the same subscriber that provided this span with its
    /// `id`.
    subscriber: Dispatch,
}

/// A guard representing a span which has been entered and is currently
/// executing.
///
/// When the guard is dropped, the span will be exited.
///
/// This is returned by the [`Span::enter`] function.
///
/// [`Span::enter`]: ../struct.Span.html#method.enter
#[derive(Debug)]
#[must_use = "once a span has been entered, it should be exited"]
pub struct Entered<'a> {
    span: &'a Span,
}

/// An owned version of [`Entered`], a guard representing a span which has been
/// entered and is currently executing.
///
/// When the guard is dropped, the span will be exited.
///
/// This is returned by the [`Span::entered`] function.
///
/// [`Span::entered`]: super::Span::entered()
#[derive(Debug)]
#[must_use = "once a span has been entered, it should be exited"]
pub struct EnteredSpan {
    span: Span,

    /// ```compile_fail
    /// use tracing::span::*;
    /// trait AssertSend: Send {}
    ///
    /// impl AssertSend for EnteredSpan {}
    /// ```
    _not_send: PhantomNotSend,
}

/// `log` target for all span lifecycle (creation/enter/exit/close) records.
#[cfg(feature = "log")]
const LIFECYCLE_LOG_TARGET: &str = "tracing::span";
/// `log` target for span activity (enter/exit) records.
#[cfg(feature = "log")]
const ACTIVITY_LOG_TARGET: &str = "tracing::span::active";

// ===== impl Span =====

impl Span {
    /// Constructs a new `Span` with the given [metadata] and set of
    /// [field values].
    ///
    /// The new span will be constructed by the currently-active [`Subscriber`],
    /// with the current span as its parent (if one exists).
    ///
    /// After the span is constructed, [field values] and/or [`follows_from`]
    /// annotations may be added to it.
    ///
    /// [metadata]: ../metadata
    /// [`Subscriber`]: ../subscriber/trait.Subscriber.html
    /// [field values]: ../field/struct.ValueSet.html
    /// [`follows_from`]: ../struct.Span.html#method.follows_from
    pub fn new(meta: &'static Metadata<'static>, values: &field::ValueSet<'_>) -> Span {
        dispatcher::get_default(|dispatch| Self::new_with(meta, values, dispatch))
    }

    #[inline]
    #[doc(hidden)]
    pub fn new_with(
        meta: &'static Metadata<'static>,
        values: &field::ValueSet<'_>,
        dispatch: &Dispatch,
    ) -> Span {
        let new_span = Attributes::new(meta, values);
        Self::make_with(meta, new_span, dispatch)
    }

    /// Constructs a new `Span` as the root of its own trace tree, with the
    /// given [metadata] and set of [field values].
    ///
    /// After the span is constructed, [field values] and/or [`follows_from`]
    /// annotations may be added to it.
    ///
    /// [metadata]: ../metadata
    /// [field values]: ../field/struct.ValueSet.html
    /// [`follows_from`]: ../struct.Span.html#method.follows_from
    pub fn new_root(meta: &'static Metadata<'static>, values: &field::ValueSet<'_>) -> Span {
        dispatcher::get_default(|dispatch| Self::new_root_with(meta, values, dispatch))
    }

    #[inline]
    #[doc(hidden)]
    pub fn new_root_with(
        meta: &'static Metadata<'static>,
        values: &field::ValueSet<'_>,
        dispatch: &Dispatch,
    ) -> Span {
        let new_span = Attributes::new_root(meta, values);
        Self::make_with(meta, new_span, dispatch)
    }

    /// Constructs a new `Span` as child of the given parent span, with the
    /// given [metadata] and set of [field values].
    ///
    /// After the span is constructed, [field values] and/or [`follows_from`]
    /// annotations may be added to it.
    ///
    /// [metadata]: ../metadata
    /// [field values]: ../field/struct.ValueSet.html
    /// [`follows_from`]: ../struct.Span.html#method.follows_from
    pub fn child_of(
        parent: impl Into<Option<Id>>,
        meta: &'static Metadata<'static>,
        values: &field::ValueSet<'_>,
    ) -> Span {
        let mut parent = parent.into();
        dispatcher::get_default(move |dispatch| {
            Self::child_of_with(Option::take(&mut parent), meta, values, dispatch)
        })
    }

    #[inline]
    #[doc(hidden)]
    pub fn child_of_with(
        parent: impl Into<Option<Id>>,
        meta: &'static Metadata<'static>,
        values: &field::ValueSet<'_>,
        dispatch: &Dispatch,
    ) -> Span {
        let new_span = match parent.into() {
            Some(parent) => Attributes::child_of(parent, meta, values),
            None => Attributes::new_root(meta, values),
        };
        Self::make_with(meta, new_span, dispatch)
    }

    /// Constructs a new disabled span with the given `Metadata`.
    ///
    /// This should be used when a span is constructed from a known callsite,
    /// but the subscriber indicates that it is disabled.
    ///
    /// Entering, exiting, and recording values on this span will not notify the
    /// `Subscriber` but _may_ record log messages if the `log` feature flag is
    /// enabled.
    #[inline(always)]
    pub fn new_disabled(meta: &'static Metadata<'static>) -> Span {
        Self {
            inner: None,
            meta: Some(meta),
        }
    }

    /// Constructs a new span that is *completely disabled*.
    ///
    /// This can be used rather than `Option<Span>` to represent cases where a
    /// span is not present.
    ///
    /// Entering, exiting, and recording values on this span will do nothing.
    #[inline(always)]
    pub const fn none() -> Span {
        Self {
            inner: None,
            meta: None,
        }
    }

    /// Returns a handle to the span [considered by the `Subscriber`] to be the
    /// current span.
    ///
    /// If the subscriber indicates that it does not track the current span, or
    /// that the thread from which this function is called is not currently
    /// inside a span, the returned span will be disabled.
    ///
    /// [considered by the `Subscriber`]: ../subscriber/trait.Subscriber.html#method.current
    pub fn current() -> Span {
        dispatcher::get_default(|dispatch| {
            if let Some((id, meta)) = dispatch.current_span().into_inner() {
                let id = dispatch.clone_span(&id);
                Self {
                    inner: Some(Inner::new(id, dispatch)),
                    meta: Some(meta),
                }
            } else {
                Self::none()
            }
        })
    }

    fn make_with(
        meta: &'static Metadata<'static>,
        new_span: Attributes<'_>,
        dispatch: &Dispatch,
    ) -> Span {
        let attrs = &new_span;
        let id = dispatch.new_span(attrs);
        let inner = Some(Inner::new(id, dispatch));

        let span = Self {
            inner,
            meta: Some(meta),
        };

        if_log_enabled! { *meta.level(), {
            let target = if attrs.is_empty() {
                LIFECYCLE_LOG_TARGET
            } else {
                meta.target()
            };
            span.log(target, level_to_log!(*meta.level()), format_args!("++ {}{}", meta.name(), FmtAttrs(attrs)));
        }}

        span
    }

    /// Enters this span, returning a guard that will exit the span when dropped.
    ///
    /// If this span is enabled by the current subscriber, then this function will
    /// call [`Subscriber::enter`] with the span's [`Id`], and dropping the guard
    /// will call [`Subscriber::exit`]. If the span is disabled, this does
    /// nothing.
    ///
    /// # In Asynchronous Code
    ///
    /// **Warning**: in asynchronous code that uses [async/await syntax][syntax],
    /// `Span::enter` should be used very carefully or avoided entirely. Holding
    /// the drop guard returned by `Span::enter` across `.await` points will
    /// result in incorrect traces.
    ///
    /// For example,
    ///
    /// ```
    /// # use tracing::info_span;
    /// # async fn some_other_async_function() {}
    /// async fn my_async_function() {
    ///     let span = info_span!("my_async_function");
    ///
    ///     // THIS WILL RESULT IN INCORRECT TRACES
    ///     let _enter = span.enter();
    ///     some_other_async_function().await;
    ///
    ///     // ...
    /// }
    /// ```
    ///
    /// The drop guard returned by `Span::enter` exits the span when it is
    /// dropped. When an async function or async block yields at an `.await`
    /// point, the current scope is _exited_, but values in that scope are
    /// **not** dropped (because the async block will eventually resume
    /// execution from that await point). This means that _another_ task will
    /// begin executing while _remaining_ in the entered span. This results in
    /// an incorrect trace.
    ///
    /// Instead of using `Span::enter` in asynchronous code, prefer the
    /// following:
    ///
    /// * To enter a span for a synchronous section of code within an async
    ///   block or function, prefer [`Span::in_scope`]. Since `in_scope` takes a
    ///   synchronous closure and exits the span when the closure returns, the
    ///   span will always be exited before the next await point. For example:
    ///   ```
    ///   # use tracing::info_span;
    ///   # async fn some_other_async_function(_: ()) {}
    ///   async fn my_async_function() {
    ///       let span = info_span!("my_async_function");
    ///
    ///       let some_value = span.in_scope(|| {
    ///           // run some synchronous code inside the span...
    ///       });
    ///
    ///       // This is okay! The span has already been exited before we reach
    ///       // the await point.
    ///       some_other_async_function(some_value).await;
    ///  
    ///       // ...
    ///   }
    ///   ```
    /// * For instrumenting asynchronous code, `tracing` provides the
    ///   [`Future::instrument` combinator][instrument] for
    ///   attaching a span to a future (async function or block). This will
    ///   enter the span _every_ time the future is polled, and exit it whenever
    ///   the future yields.
    ///   
    ///   `Instrument` can be used with an async block inside an async function:
    ///   ```ignore
    ///   # use tracing::info_span;
    ///   use tracing::Instrument;
    ///
    ///   # async fn some_other_async_function() {}
    ///   async fn my_async_function() {
    ///       let span = info_span!("my_async_function");
    ///       async move {
    ///          // This is correct! If we yield here, the span will be exited,
    ///          // and re-entered when we resume.
    ///          some_other_async_function().await;
    ///
    ///          //more asynchronous code inside the span...
    ///
    ///       }
    ///         // instrument the async block with the span...
    ///         .instrument(span)
    ///         // ...and await it.
    ///         .await
    ///   }
    ///   ```
    ///
    ///   It can also be used to instrument calls to async functions at the
    ///   callsite:
    ///   ```ignore
    ///   # use tracing::debug_span;
    ///   use tracing::Instrument;
    ///
    ///   # async fn some_other_async_function() {}
    ///   async fn my_async_function() {
    ///       let some_value = some_other_async_function()
    ///          .instrument(debug_span!("some_other_async_function"))
    ///          .await;
    ///
    ///       // ...
    ///   }
    ///   ```
    ///
    /// * The [`#[instrument]` attribute macro][attr] can automatically generate
    ///   correct code when used on an async function:
    ///
    ///   ```ignore
    ///   # async fn some_other_async_function() {}
    ///   #[tracing::instrument(level = "info")]
    ///   async fn my_async_function() {
    ///   
    ///       // This is correct! If we yield here, the span will be exited,
    ///       // and re-entered when we resume.
    ///       some_other_async_function().await;
    ///
    ///       // ...
    ///    
    ///   }
    ///   ```
    ///
    /// [syntax]: https://rust-lang.github.io/async-book/01_getting_started/04_async_await_primer.html
    /// [`Span::in_scope`]: #method.in_scope
    /// [instrument]: https://docs.rs/tracing/latest/tracing/trait.Instrument.html
    /// [attr]: ../../attr.instrument.html
    ///
    /// # Examples
    ///
    /// ```
    /// #[macro_use] extern crate tracing;
    /// # use tracing::Level;
    /// let span = span!(Level::INFO, "my_span");
    /// let guard = span.enter();
    ///
    /// // code here is within the span
    ///
    /// drop(guard);
    ///
    /// // code here is no longer within the span
    ///
    /// ```
    ///
    /// Guards need not be explicitly dropped:
    ///
    /// ```
    /// #[macro_use] extern crate tracing;
    /// fn my_function() -> String {
    ///     // enter a span for the duration of this function.
    ///     let span = trace_span!("my_function");
    ///     let _enter = span.enter();
    ///
    ///     // anything happening in functions we call is still inside the span...
    ///     my_other_function();
    ///
    ///     // returning from the function drops the guard, exiting the span.
    ///     return "Hello world".to_owned();
    /// }
    ///
    /// fn my_other_function() {
    ///     // ...
    /// }
    /// ```
    ///
    /// Sub-scopes may be created to limit the duration for which the span is
    /// entered:
    ///
    /// ```
    /// #[macro_use] extern crate tracing;
    /// let span = info_span!("my_great_span");
    ///
    /// {
    ///     let _enter = span.enter();
    ///
    ///     // this event occurs inside the span.
    ///     info!("i'm in the span!");
    ///
    ///     // exiting the scope drops the guard, exiting the span.
    /// }
    ///
    /// // this event is not inside the span.
    /// info!("i'm outside the span!")
    /// ```
    ///
    /// [`Subscriber::enter`]: ../subscriber/trait.Subscriber.html#method.enter
    /// [`Subscriber::exit`]: ../subscriber/trait.Subscriber.html#method.exit
    /// [`Id`]: ../struct.Id.html
    #[inline]
    pub fn enter(&self) -> Entered<'_> {
        self.do_enter();
        Entered { span: self }
    }

    /// Enters this span, consuming it and returning a [guard][`EnteredSpan`]
    /// that will exit the span when dropped.
    ///
    /// If this span is enabled by the current subscriber, then this function will
    /// call [`Subscriber::enter`] with the span's [`Id`], and dropping the guard
    /// will call [`Subscriber::exit`]. If the span is disabled, this does
    /// nothing.
    ///
    /// This is similar to the [`Span::enter`] method, except that it moves the
    /// span by value into the returned guard, rather than borrowing it.
    /// Therefore, this method can be used to create and enter a span in a
    /// single expression, without requiring a `let`-binding. For example:
    ///
    /// ```
    /// # use tracing::info_span;
    /// let _span = info_span!("something_interesting").entered();
    /// ```
    /// rather than:
    /// ```
    /// # use tracing::info_span;
    /// let span = info_span!("something_interesting");
    /// let _e = span.enter();
    /// ```
    ///
    /// Furthermore, `entered` may be used when the span must be stored in some
    /// other struct or be passed to a function while remaining entered.
    ///
    /// <div class="information">
    ///     <div class="tooltip ignore" style="">ⓘ<span class="tooltiptext">Note</span></div>
    /// </div>
    /// <div class="example-wrap" style="display:inline-block">
    /// <pre class="ignore" style="white-space:normal;font:inherit;">
    ///
    /// **Note**: The returned [`EnteredSpan`] guard does not
    /// implement `Send`. Dropping the guard will exit *this* span,
    /// and if the guard is sent to another thread and dropped there, that thread may
    /// never have entered this span. Thus, `EnteredSpan`s should not be sent
    /// between threads.
    ///
    /// </pre></div>
    ///
    /// **Warning**: in asynchronous code that uses [async/await syntax][syntax],
    /// [`Span::entered`] should be used very carefully or avoided entirely. Holding
    /// the drop guard returned by `Span::entered` across `.await` points will
    /// result in incorrect traces. See the documentation for the
    /// [`Span::enter`] method for details.
    ///
    /// [syntax]: https://rust-lang.github.io/async-book/01_getting_started/04_async_await_primer.html
    ///
    /// # Examples
    ///
    /// The returned guard can be [explicitly exited][EnteredSpan::exit],
    /// returning the un-entered span:
    ///
    /// ```
    /// # use tracing::{Level, span};
    /// let span = span!(Level::INFO, "doing_something").entered();
    ///
    /// // code here is within the span
    ///
    /// // explicitly exit the span, returning it
    /// let span = span.exit();
    ///
    /// // code here is no longer within the span
    ///
    /// // enter the span again
    /// let span = span.entered();
    ///
    /// // now we are inside the span once again
    /// ```
    ///
    /// Guards need not be explicitly dropped:
    ///
    /// ```
    /// # use tracing::trace_span;
    /// fn my_function() -> String {
    ///     // enter a span for the duration of this function.
    ///     let span = trace_span!("my_function").entered();
    ///
    ///     // anything happening in functions we call is still inside the span...
    ///     my_other_function();
    ///
    ///     // returning from the function drops the guard, exiting the span.
    ///     return "Hello world".to_owned();
    /// }
    ///
    /// fn my_other_function() {
    ///     // ...
    /// }
    /// ```
    ///
    /// Since the [`EnteredSpan`] guard can dereference to the [`Span`] itself,
    /// the span may still be accessed while entered. For example:
    ///
    /// ```rust
    /// # use tracing::info_span;
    /// use tracing::field;
    ///
    /// // create the span with an empty field, and enter it.
    /// let span = info_span!("my_span", some_field = field::Empty).entered();
    ///
    /// // we can still record a value for the field while the span is entered.
    /// span.record("some_field", &"hello world!");
    /// ```
    ///
    /// [`Subscriber::enter`]: ../subscriber/trait.Subscriber.html#method.enter
    /// [`Subscriber::exit`]: ../subscriber/trait.Subscriber.html#method.exit
    /// [`Id`]: ../struct.Id.html
    #[inline]
    pub fn entered(self) -> EnteredSpan {
        self.do_enter();
        EnteredSpan {
            span: self,
            _not_send: PhantomNotSend,
        }
    }

    #[inline]
    fn do_enter(&self) {
        if let Some(inner) = self.inner.as_ref() {
            inner.subscriber.enter(&inner.id);
        }

        if_log_enabled! { crate::Level::TRACE, {
            if let Some(ref meta) = self.meta {
                self.log(ACTIVITY_LOG_TARGET, log::Level::Trace, format_args!("-> {}", meta.name()));
            }
        }}
    }

    // Called from [`Entered`] and [`EnteredSpan`] drops.
    //
    // Running this behaviour on drop rather than with an explicit function
    // call means that spans may still be exited when unwinding.
    #[inline]
    fn do_exit(&self) {
        if let Some(inner) = self.inner.as_ref() {
            inner.subscriber.exit(&inner.id);
        }

        if_log_enabled! { crate::Level::TRACE, {
            if let Some(ref _meta) = self.meta {
                self.log(ACTIVITY_LOG_TARGET, log::Level::Trace, format_args!("<- {}", _meta.name()));
            }
        }}
    }

    /// Executes the given function in the context of this span.
    ///
    /// If this span is enabled, then this function enters the span, invokes `f`
    /// and then exits the span. If the span is disabled, `f` will still be
    /// invoked, but in the context of the currently-executing span (if there is
    /// one).
    ///
    /// Returns the result of evaluating `f`.
    ///
    /// # Examples
    ///
    /// ```
    /// # #[macro_use] extern crate tracing;
    /// # use tracing::Level;
    /// let my_span = span!(Level::TRACE, "my_span");
    ///
    /// my_span.in_scope(|| {
    ///     // this event occurs within the span.
    ///     trace!("i'm in the span!");
    /// });
    ///
    /// // this event occurs outside the span.
    /// trace!("i'm not in the span!");
    /// ```
    ///
    /// Calling a function and returning the result:
    /// ```
    /// # use tracing::{info_span, Level};
    /// fn hello_world() -> String {
    ///     "Hello world!".to_owned()
    /// }
    ///
    /// let span = info_span!("hello_world");
    /// // the span will be entered for the duration of the call to
    /// // `hello_world`.
    /// let a_string = span.in_scope(hello_world);
    ///
    pub fn in_scope<F: FnOnce() -> T, T>(&self, f: F) -> T {
        let _enter = self.enter();
        f()
    }

    /// Returns a [`Field`](../field/struct.Field.html) for the field with the
    /// given `name`, if one exists,
    pub fn field<Q: ?Sized>(&self, field: &Q) -> Option<field::Field>
    where
        Q: field::AsField,
    {
        self.metadata().and_then(|meta| field.as_field(meta))
    }

    /// Returns true if this `Span` has a field for the given
    /// [`Field`](../field/struct.Field.html) or field name.
    #[inline]
    pub fn has_field<Q: ?Sized>(&self, field: &Q) -> bool
    where
        Q: field::AsField,
    {
        self.field(field).is_some()
    }

    /// Records that the field described by `field` has the value `value`.
    ///
    /// This may be used with [`field::Empty`] to declare fields whose values
    /// are not known when the span is created, and record them later:
    /// ```
    /// use tracing::{trace_span, field};
    ///
    /// // Create a span with two fields: `greeting`, with the value "hello world", and
    /// // `parting`, without a value.
    /// let span = trace_span!("my_span", greeting = "hello world", parting = field::Empty);
    ///
    /// // ...
    ///
    /// // Now, record a value for parting as well.
    /// // (note that the field name is passed as a string slice)
    /// span.record("parting", &"goodbye world!");
    /// ```
    /// However, it may also be used to record a _new_ value for a field whose
    /// value was already recorded:
    /// ```
    /// use tracing::info_span;
    /// # fn do_something() -> Result<(), ()> { Err(()) }
    ///
    /// // Initially, let's assume that our attempt to do something is going okay...
    /// let span = info_span!("doing_something", is_okay = true);
    /// let _e = span.enter();
    ///
    /// match do_something() {
    ///     Ok(something) => {
    ///         // ...
    ///     }
    ///     Err(_) => {
    ///         // Things are no longer okay!
    ///         span.record("is_okay", &false);
    ///     }
    /// }
    /// ```
    ///
    /// <div class="information">
    ///     <div class="tooltip ignore" style="">ⓘ<span class="tooltiptext">Note</span></div>
    /// </div>
    /// <div class="example-wrap" style="display:inline-block">
    /// <pre class="ignore" style="white-space:normal;font:inherit;">
    /// <strong>Note</strong>: The fields associated with a span are part of its
    /// <a href="../struct.Metadata.html"><code>Metadata</code></a>.
    /// The <a href="../struct.Metadata.html"><code>Metadata</code></a>. describing a particular
    /// span is constructed statically when the span is created and cannot be extended later to
    /// add new fields. Therefore, you cannot record a value for a field that was not specified
    /// when the span was created:</pre></div>
    ///
    /// ```
    /// use tracing::{trace_span, field};
    ///
    /// // Create a span with two fields: `greeting`, with the value "hello world", and
    /// // `parting`, without a value.
    /// let span = trace_span!("my_span", greeting = "hello world", parting = field::Empty);
    ///
    /// // ...
    ///
    /// // Now, you try to record a value for a new field, `new_field`, which was not
    /// // declared as `Empty` or populated when you created `span`.
    /// // You won't get any error, but the assignment will have no effect!
    /// span.record("new_field", &"interesting_value_you_really_need");
    ///
    /// // Instead, all fields that may be recorded after span creation should be declared up front,
    /// // using field::Empty when a value is not known, as we did for `parting`.
    /// // This `record` call will indeed replace field::Empty with "you will be remembered".
    /// span.record("parting", &"you will be remembered");
    /// ```
    ///
    /// [`field::Empty`]: ../field/struct.Empty.html
    /// [`Metadata`]: ../struct.Metadata.html
    pub fn record<Q: ?Sized, V>(&self, field: &Q, value: &V) -> &Self
    where
        Q: field::AsField,
        V: field::Value,
    {
        if let Some(ref meta) = self.meta {
            if let Some(field) = field.as_field(meta) {
                self.record_all(
                    &meta
                        .fields()
                        .value_set(&[(&field, Some(value as &dyn field::Value))]),
                );
            }
        }

        self
    }

    /// Records all the fields in the provided `ValueSet`.
    pub fn record_all(&self, values: &field::ValueSet<'_>) -> &Self {
        let record = Record::new(values);
        if let Some(ref inner) = self.inner {
            inner.record(&record);
        }

        if let Some(ref _meta) = self.meta {
            if_log_enabled! { *_meta.level(), {
                let target = if record.is_empty() {
                    LIFECYCLE_LOG_TARGET
                } else {
                    _meta.target()
                };
                self.log(target, level_to_log!(*_meta.level()), format_args!("{}{}", _meta.name(), FmtValues(&record)));
            }}
        }

        self
    }

    /// Returns `true` if this span was disabled by the subscriber and does not
    /// exist.
    ///
    /// See also [`is_none`].
    ///
    /// [`is_none`]: #method.is_none
    #[inline]
    pub fn is_disabled(&self) -> bool {
        self.inner.is_none()
    }

    /// Returns `true` if this span was constructed by [`Span::none`] and is
    /// empty.
    ///
    /// If `is_none` returns `true` for a given span, then [`is_disabled`] will
    /// also return `true`. However, when a span is disabled by the subscriber
    /// rather than constructed by `Span::none`, this method will return
    /// `false`, while `is_disabled` will return `true`.
    ///
    /// [`Span::none`]: #method.none
    /// [`is_disabled`]: #method.is_disabled
    #[inline]
    pub fn is_none(&self) -> bool {
        self.is_disabled() && self.meta.is_none()
    }

    /// Indicates that the span with the given ID has an indirect causal
    /// relationship with this span.
    ///
    /// This relationship differs somewhat from the parent-child relationship: a
    /// span may have any number of prior spans, rather than a single one; and
    /// spans are not considered to be executing _inside_ of the spans they
    /// follow from. This means that a span may close even if subsequent spans
    /// that follow from it are still open, and time spent inside of a
    /// subsequent span should not be included in the time its precedents were
    /// executing. This is used to model causal relationships such as when a
    /// single future spawns several related background tasks, et cetera.
    ///
    /// If this span is disabled, or the resulting follows-from relationship
    /// would be invalid, this function will do nothing.
    ///
    /// # Examples
    ///
    /// Setting a `follows_from` relationship with a `Span`:
    /// ```
    /// # use tracing::{span, Id, Level, Span};
    /// let span1 = span!(Level::INFO, "span_1");
    /// let span2 = span!(Level::DEBUG, "span_2");
    /// span2.follows_from(span1);
    /// ```
    ///
    /// Setting a `follows_from` relationship with the current span:
    /// ```
    /// # use tracing::{span, Id, Level, Span};
    /// let span = span!(Level::INFO, "hello!");
    /// span.follows_from(Span::current());
    /// ```
    ///
    /// Setting a `follows_from` relationship with a `Span` reference:
    /// ```
    /// # use tracing::{span, Id, Level, Span};
    /// let span = span!(Level::INFO, "hello!");
    /// let curr = Span::current();
    /// span.follows_from(&curr);
    /// ```
    ///
    /// Setting a `follows_from` relationship with an `Id`:
    /// ```
    /// # use tracing::{span, Id, Level, Span};
    /// let span = span!(Level::INFO, "hello!");
    /// let id = span.id();
    /// span.follows_from(id);
    /// ```
    pub fn follows_from(&self, from: impl Into<Option<Id>>) -> &Self {
        if let Some(ref inner) = self.inner {
            if let Some(from) = from.into() {
                inner.follows_from(&from);
            }
        }
        self
    }

    /// Returns this span's `Id`, if it is enabled.
    pub fn id(&self) -> Option<Id> {
        self.inner.as_ref().map(Inner::id)
    }

    /// Returns this span's `Metadata`, if it is enabled.
    pub fn metadata(&self) -> Option<&'static Metadata<'static>> {
        self.meta
    }

    #[cfg(feature = "log")]
    #[inline]
    fn log(&self, target: &str, level: log::Level, message: fmt::Arguments<'_>) {
        if let Some(ref meta) = self.meta {
            if level_to_log!(*meta.level()) <= log::max_level() {
                let logger = log::logger();
                let log_meta = log::Metadata::builder().level(level).target(target).build();
                if logger.enabled(&log_meta) {
                    if let Some(ref inner) = self.inner {
                        logger.log(
                            &log::Record::builder()
                                .metadata(log_meta)
                                .module_path(meta.module_path())
                                .file(meta.file())
                                .line(meta.line())
                                .args(format_args!("{}; span={}", message, inner.id.into_u64()))
                                .build(),
                        );
                    } else {
                        logger.log(
                            &log::Record::builder()
                                .metadata(log_meta)
                                .module_path(meta.module_path())
                                .file(meta.file())
                                .line(meta.line())
                                .args(message)
                                .build(),
                        );
                    }
                }
            }
        }
    }

    /// Invokes a function with a reference to this span's ID and subscriber.
    ///
    /// if this span is enabled, the provided function is called, and the result is returned.
    /// If the span is disabled, the function is not called, and this method returns `None`
    /// instead.
    pub fn with_subscriber<T>(&self, f: impl FnOnce((&Id, &Dispatch)) -> T) -> Option<T> {
        self.inner
            .as_ref()
            .map(|inner| f((&inner.id, &inner.subscriber)))
    }
}

impl cmp::PartialEq for Span {
    fn eq(&self, other: &Self) -> bool {
        match (&self.meta, &other.meta) {
            (Some(this), Some(that)) => {
                this.callsite() == that.callsite() && self.inner == other.inner
            }
            _ => false,
        }
    }
}

impl Hash for Span {
    fn hash<H: Hasher>(&self, hasher: &mut H) {
        self.inner.hash(hasher);
    }
}

impl fmt::Debug for Span {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        let mut span = f.debug_struct("Span");
        if let Some(ref meta) = self.meta {
            span.field("name", &meta.name())
                .field("level", &meta.level())
                .field("target", &meta.target());

            if let Some(ref inner) = self.inner {
                span.field("id", &inner.id());
            } else {
                span.field("disabled", &true);
            }

            if let Some(ref path) = meta.module_path() {
                span.field("module_path", &path);
            }

            if let Some(ref line) = meta.line() {
                span.field("line", &line);
            }

            if let Some(ref file) = meta.file() {
                span.field("file", &file);
            }
        } else {
            span.field("none", &true);
        }

        span.finish()
    }
}

impl<'a> From<&'a Span> for Option<&'a Id> {
    fn from(span: &'a Span) -> Self {
        span.inner.as_ref().map(|inner| &inner.id)
    }
}

impl<'a> From<&'a Span> for Option<Id> {
    fn from(span: &'a Span) -> Self {
        span.inner.as_ref().map(Inner::id)
    }
}

impl From<Span> for Option<Id> {
    fn from(span: Span) -> Self {
        span.inner.as_ref().map(Inner::id)
    }
}

impl<'a> From<&'a EnteredSpan> for Option<&'a Id> {
    fn from(span: &'a EnteredSpan) -> Self {
        span.inner.as_ref().map(|inner| &inner.id)
    }
}

impl<'a> From<&'a EnteredSpan> for Option<Id> {
    fn from(span: &'a EnteredSpan) -> Self {
        span.inner.as_ref().map(Inner::id)
    }
}

impl Drop for Span {
    fn drop(&mut self) {
        if let Some(Inner {
            ref id,
            ref subscriber,
        }) = self.inner
        {
            subscriber.try_close(id.clone());
        }

        if let Some(ref _meta) = self.meta {
            if_log_enabled! { crate::Level::TRACE, {
                self.log(
                    LIFECYCLE_LOG_TARGET,
                    log::Level::Trace,
                    format_args!("-- {}", _meta.name()),
                );
            }}
        }
    }
}

// ===== impl Inner =====

impl Inner {
    /// Indicates that the span with the given ID has an indirect causal
    /// relationship with this span.
    ///
    /// This relationship differs somewhat from the parent-child relationship: a
    /// span may have any number of prior spans, rather than a single one; and
    /// spans are not considered to be executing _inside_ of the spans they
    /// follow from. This means that a span may close even if subsequent spans
    /// that follow from it are still open, and time spent inside of a
    /// subsequent span should not be included in the time its precedents were
    /// executing. This is used to model causal relationships such as when a
    /// single future spawns several related background tasks, et cetera.
    ///
    /// If this span is disabled, this function will do nothing. Otherwise, it
    /// returns `Ok(())` if the other span was added as a precedent of this
    /// span, or an error if this was not possible.
    fn follows_from(&self, from: &Id) {
        self.subscriber.record_follows_from(&self.id, &from)
    }

    /// Returns the span's ID.
    fn id(&self) -> Id {
        self.id.clone()
    }

    fn record(&self, values: &Record<'_>) {
        self.subscriber.record(&self.id, values)
    }

    fn new(id: Id, subscriber: &Dispatch) -> Self {
        Inner {
            id,
            subscriber: subscriber.clone(),
        }
    }
}

impl cmp::PartialEq for Inner {
    fn eq(&self, other: &Self) -> bool {
        self.id == other.id
    }
}

impl Hash for Inner {
    fn hash<H: Hasher>(&self, state: &mut H) {
        self.id.hash(state);
    }
}

impl Clone for Inner {
    fn clone(&self) -> Self {
        Inner {
            id: self.subscriber.clone_span(&self.id),
            subscriber: self.subscriber.clone(),
        }
    }
}

// ===== impl Entered =====

impl EnteredSpan {
    /// Returns this span's `Id`, if it is enabled.
    pub fn id(&self) -> Option<Id> {
        self.inner.as_ref().map(Inner::id)
    }

    /// Exits this span, returning the underlying [`Span`].
    #[inline]
    pub fn exit(mut self) -> Span {
        // One does not simply move out of a struct with `Drop`.
        let span = mem::replace(&mut self.span, Span::none());
        span.do_exit();
        span
    }
}

impl Deref for EnteredSpan {
    type Target = Span;

    #[inline]
    fn deref(&self) -> &Span {
        &self.span
    }
}

impl<'a> Drop for Entered<'a> {
    #[inline]
    fn drop(&mut self) {
        self.span.do_exit()
    }
}

impl Drop for EnteredSpan {
    #[inline]
    fn drop(&mut self) {
        self.span.do_exit()
    }
}

/// Technically, `EnteredSpan` _can_ implement both `Send` *and*
/// `Sync` safely. It doesn't, because it has a `PhantomNotSend` field,
/// specifically added in order to make it `!Send`.
///
/// Sending an `EnteredSpan` guard between threads cannot cause memory unsafety.
/// However, it *would* result in incorrect behavior, so we add a
/// `PhantomNotSend` to prevent it from being sent between threads. This is
/// because it must be *dropped* on the same thread that it was created;
/// otherwise, the span will never be exited on the thread where it was entered,
/// and it will attempt to exit the span on a thread that may never have entered
/// it. However, we still want them to be `Sync` so that a struct holding an
/// `Entered` guard can be `Sync`.
///
/// Thus, this is totally safe.
#[derive(Debug)]
struct PhantomNotSend {
    ghost: PhantomData<*mut ()>,
}

#[allow(non_upper_case_globals)]
const PhantomNotSend: PhantomNotSend = PhantomNotSend { ghost: PhantomData };

/// # Safety
///
/// Trivially safe, as `PhantomNotSend` doesn't have any API.
unsafe impl Sync for PhantomNotSend {}

#[cfg(feature = "log")]
struct FmtValues<'a>(&'a Record<'a>);

#[cfg(feature = "log")]
impl<'a> fmt::Display for FmtValues<'a> {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        let mut res = Ok(());
        let mut is_first = true;
        self.0.record(&mut |k: &field::Field, v: &dyn fmt::Debug| {
            res = write!(f, "{} {}={:?}", if is_first { ";" } else { "" }, k, v);
            is_first = false;
        });
        res
    }
}

#[cfg(feature = "log")]
struct FmtAttrs<'a>(&'a Attributes<'a>);

#[cfg(feature = "log")]
impl<'a> fmt::Display for FmtAttrs<'a> {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        let mut res = Ok(());
        let mut is_first = true;
        self.0.record(&mut |k: &field::Field, v: &dyn fmt::Debug| {
            res = write!(f, "{} {}={:?}", if is_first { ";" } else { "" }, k, v);
            is_first = false;
        });
        res
    }
}

#[cfg(test)]
mod test {
    use super::*;

    trait AssertSend: Send {}
    impl AssertSend for Span {}

    trait AssertSync: Sync {}
    impl AssertSync for Span {}
    impl AssertSync for Entered<'_> {}
    impl AssertSync for EnteredSpan {}
}