1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234
use crate::sync::rwlock::owned_read_guard::OwnedRwLockReadGuard; use crate::sync::rwlock::owned_write_guard_mapped::OwnedRwLockMappedWriteGuard; use crate::sync::rwlock::RwLock; use std::fmt; use std::marker::PhantomData; use std::mem::{self, ManuallyDrop}; use std::ops; use std::sync::Arc; /// Owned RAII structure used to release the exclusive write access of a lock when /// dropped. /// /// This structure is created by the [`write_owned`] method /// on [`RwLock`]. /// /// [`write_owned`]: method@crate::sync::RwLock::write_owned /// [`RwLock`]: struct@crate::sync::RwLock pub struct OwnedRwLockWriteGuard<T: ?Sized> { pub(super) permits_acquired: u32, // ManuallyDrop allows us to destructure into this field without running the destructor. pub(super) lock: ManuallyDrop<Arc<RwLock<T>>>, pub(super) data: *mut T, pub(super) _p: PhantomData<T>, } impl<T: ?Sized> OwnedRwLockWriteGuard<T> { /// Make a new [`OwnedRwLockMappedWriteGuard`] for a component of the locked /// data. /// /// This operation cannot fail as the `OwnedRwLockWriteGuard` passed in /// already locked the data. /// /// This is an associated function that needs to be used as /// `OwnedRwLockWriteGuard::map(..)`. A method would interfere with methods /// of the same name on the contents of the locked data. /// /// # Examples /// /// ``` /// use std::sync::Arc; /// use tokio::sync::{RwLock, OwnedRwLockWriteGuard}; /// /// #[derive(Debug, Clone, Copy, PartialEq, Eq)] /// struct Foo(u32); /// /// # #[tokio::main] /// # async fn main() { /// let lock = Arc::new(RwLock::new(Foo(1))); /// /// { /// let lock = Arc::clone(&lock); /// let mut mapped = OwnedRwLockWriteGuard::map(lock.write_owned().await, |f| &mut f.0); /// *mapped = 2; /// } /// /// assert_eq!(Foo(2), *lock.read().await); /// # } /// ``` #[inline] pub fn map<F, U: ?Sized>(mut this: Self, f: F) -> OwnedRwLockMappedWriteGuard<T, U> where F: FnOnce(&mut T) -> &mut U, { let data = f(&mut *this) as *mut U; let lock = unsafe { ManuallyDrop::take(&mut this.lock) }; let permits_acquired = this.permits_acquired; // NB: Forget to avoid drop impl from being called. mem::forget(this); OwnedRwLockMappedWriteGuard { permits_acquired, lock: ManuallyDrop::new(lock), data, _p: PhantomData, } } /// Attempts to make a new [`OwnedRwLockMappedWriteGuard`] for a component /// of the locked data. The original guard is returned if the closure /// returns `None`. /// /// This operation cannot fail as the `OwnedRwLockWriteGuard` passed in /// already locked the data. /// /// This is an associated function that needs to be /// used as `OwnedRwLockWriteGuard::try_map(...)`. A method would interfere /// with methods of the same name on the contents of the locked data. /// /// [`RwLockMappedWriteGuard`]: struct@crate::sync::RwLockMappedWriteGuard /// /// # Examples /// /// ``` /// use std::sync::Arc; /// use tokio::sync::{RwLock, OwnedRwLockWriteGuard}; /// /// #[derive(Debug, Clone, Copy, PartialEq, Eq)] /// struct Foo(u32); /// /// # #[tokio::main] /// # async fn main() { /// let lock = Arc::new(RwLock::new(Foo(1))); /// /// { /// let guard = Arc::clone(&lock).write_owned().await; /// let mut guard = OwnedRwLockWriteGuard::try_map(guard, |f| Some(&mut f.0)).expect("should not fail"); /// *guard = 2; /// } /// /// assert_eq!(Foo(2), *lock.read().await); /// # } /// ``` #[inline] pub fn try_map<F, U: ?Sized>( mut this: Self, f: F, ) -> Result<OwnedRwLockMappedWriteGuard<T, U>, Self> where F: FnOnce(&mut T) -> Option<&mut U>, { let data = match f(&mut *this) { Some(data) => data as *mut U, None => return Err(this), }; let permits_acquired = this.permits_acquired; let lock = unsafe { ManuallyDrop::take(&mut this.lock) }; // NB: Forget to avoid drop impl from being called. mem::forget(this); Ok(OwnedRwLockMappedWriteGuard { permits_acquired, lock: ManuallyDrop::new(lock), data, _p: PhantomData, }) } /// Converts this `OwnedRwLockWriteGuard` into an /// `OwnedRwLockMappedWriteGuard`. This method can be used to store a /// non-mapped guard in a struct field that expects a mapped guard. /// /// This is equivalent to calling `OwnedRwLockWriteGuard::map(guard, |me| me)`. #[inline] pub fn into_mapped(this: Self) -> OwnedRwLockMappedWriteGuard<T> { Self::map(this, |me| me) } /// Atomically downgrades a write lock into a read lock without allowing /// any writers to take exclusive access of the lock in the meantime. /// /// **Note:** This won't *necessarily* allow any additional readers to acquire /// locks, since [`RwLock`] is fair and it is possible that a writer is next /// in line. /// /// Returns an RAII guard which will drop this read access of the `RwLock` /// when dropped. /// /// # Examples /// /// ``` /// # use tokio::sync::RwLock; /// # use std::sync::Arc; /// # /// # #[tokio::main] /// # async fn main() { /// let lock = Arc::new(RwLock::new(1)); /// /// let n = lock.clone().write_owned().await; /// /// let cloned_lock = lock.clone(); /// let handle = tokio::spawn(async move { /// *cloned_lock.write_owned().await = 2; /// }); /// /// let n = n.downgrade(); /// assert_eq!(*n, 1, "downgrade is atomic"); /// /// drop(n); /// handle.await.unwrap(); /// assert_eq!(*lock.read().await, 2, "second writer obtained write lock"); /// # } /// ``` pub fn downgrade(mut self) -> OwnedRwLockReadGuard<T> { let lock = unsafe { ManuallyDrop::take(&mut self.lock) }; let data = self.data; // Release all but one of the permits held by the write guard lock.s.release((self.permits_acquired - 1) as usize); // NB: Forget to avoid drop impl from being called. mem::forget(self); OwnedRwLockReadGuard { lock: ManuallyDrop::new(lock), data, _p: PhantomData, } } } impl<T: ?Sized> ops::Deref for OwnedRwLockWriteGuard<T> { type Target = T; fn deref(&self) -> &T { unsafe { &*self.data } } } impl<T: ?Sized> ops::DerefMut for OwnedRwLockWriteGuard<T> { fn deref_mut(&mut self) -> &mut T { unsafe { &mut *self.data } } } impl<T: ?Sized> fmt::Debug for OwnedRwLockWriteGuard<T> where T: fmt::Debug, { fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { fmt::Debug::fmt(&**self, f) } } impl<T: ?Sized> fmt::Display for OwnedRwLockWriteGuard<T> where T: fmt::Display, { fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { fmt::Display::fmt(&**self, f) } } impl<T: ?Sized> Drop for OwnedRwLockWriteGuard<T> { fn drop(&mut self) { self.lock.s.release(self.permits_acquired as usize); unsafe { ManuallyDrop::drop(&mut self.lock) }; } }