1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
#![cfg_attr(not(feature = "sync"), allow(unreachable_pub, dead_code))]

use crate::sync::batch_semaphore as semaphore;

use std::cell::UnsafeCell;
use std::error::Error;
use std::ops::{Deref, DerefMut};
use std::sync::Arc;
use std::{fmt, marker, mem};

/// An asynchronous `Mutex`-like type.
///
/// This type acts similarly to [`std::sync::Mutex`], with two major
/// differences: [`lock`] is an async method so does not block, and the lock
/// guard is designed to be held across `.await` points.
///
/// # Which kind of mutex should you use?
///
/// Contrary to popular belief, it is ok and often preferred to use the ordinary
/// [`Mutex`][std] from the standard library in asynchronous code.
///
/// The feature that the async mutex offers over the blocking mutex is the
/// ability to keep it locked across an `.await` point. This makes the async
/// mutex more expensive than the blocking mutex, so the blocking mutex should
/// be preferred in the cases where it can be used. The primary use case for the
/// async mutex is to provide shared mutable access to IO resources such as a
/// database connection. If the value behind the mutex is just data, it's
/// usually appropriate to use a blocking mutex such as the one in the standard
/// library or [`parking_lot`].
///
/// Note that, although the compiler will not prevent the std `Mutex` from holding
/// its guard across `.await` points in situations where the task is not movable
/// between threads, this virtually never leads to correct concurrent code in
/// practice as it can easily lead to deadlocks.
///
/// A common pattern is to wrap the `Arc<Mutex<...>>` in a struct that provides
/// non-async methods for performing operations on the data within, and only
/// lock the mutex inside these methods. The [mini-redis] example provides an
/// illustration of this pattern.
///
/// Additionally, when you _do_ want shared access to an IO resource, it is
/// often better to spawn a task to manage the IO resource, and to use message
/// passing to communicate with that task.
///
/// [std]: std::sync::Mutex
/// [`parking_lot`]: https://docs.rs/parking_lot
/// [mini-redis]: https://github.com/tokio-rs/mini-redis/blob/master/src/db.rs
///
/// # Examples:
///
/// ```rust,no_run
/// use tokio::sync::Mutex;
/// use std::sync::Arc;
///
/// #[tokio::main]
/// async fn main() {
///     let data1 = Arc::new(Mutex::new(0));
///     let data2 = Arc::clone(&data1);
///
///     tokio::spawn(async move {
///         let mut lock = data2.lock().await;
///         *lock += 1;
///     });
///
///     let mut lock = data1.lock().await;
///     *lock += 1;
/// }
/// ```
///
///
/// ```rust,no_run
/// use tokio::sync::Mutex;
/// use std::sync::Arc;
///
/// #[tokio::main]
/// async fn main() {
///     let count = Arc::new(Mutex::new(0));
///
///     for i in 0..5 {
///         let my_count = Arc::clone(&count);
///         tokio::spawn(async move {
///             for j in 0..10 {
///                 let mut lock = my_count.lock().await;
///                 *lock += 1;
///                 println!("{} {} {}", i, j, lock);
///             }
///         });
///     }
///
///     loop {
///         if *count.lock().await >= 50 {
///             break;
///         }
///     }
///     println!("Count hit 50.");
/// }
/// ```
/// There are a few things of note here to pay attention to in this example.
/// 1. The mutex is wrapped in an [`Arc`] to allow it to be shared across
///    threads.
/// 2. Each spawned task obtains a lock and releases it on every iteration.
/// 3. Mutation of the data protected by the Mutex is done by de-referencing
///    the obtained lock as seen on lines 12 and 19.
///
/// Tokio's Mutex works in a simple FIFO (first in, first out) style where all
/// calls to [`lock`] complete in the order they were performed. In that way the
/// Mutex is "fair" and predictable in how it distributes the locks to inner
/// data. Locks are released and reacquired after every iteration, so basically,
/// each thread goes to the back of the line after it increments the value once.
/// Note that there's some unpredictability to the timing between when the
/// threads are started, but once they are going they alternate predictably.
/// Finally, since there is only a single valid lock at any given time, there is
/// no possibility of a race condition when mutating the inner value.
///
/// Note that in contrast to [`std::sync::Mutex`], this implementation does not
/// poison the mutex when a thread holding the [`MutexGuard`] panics. In such a
/// case, the mutex will be unlocked. If the panic is caught, this might leave
/// the data protected by the mutex in an inconsistent state.
///
/// [`Mutex`]: struct@Mutex
/// [`MutexGuard`]: struct@MutexGuard
/// [`Arc`]: struct@std::sync::Arc
/// [`std::sync::Mutex`]: struct@std::sync::Mutex
/// [`Send`]: trait@std::marker::Send
/// [`lock`]: method@Mutex::lock
pub struct Mutex<T: ?Sized> {
    s: semaphore::Semaphore,
    c: UnsafeCell<T>,
}

/// A handle to a held `Mutex`. The guard can be held across any `.await` point
/// as it is [`Send`].
///
/// As long as you have this guard, you have exclusive access to the underlying
/// `T`. The guard internally borrows the `Mutex`, so the mutex will not be
/// dropped while a guard exists.
///
/// The lock is automatically released whenever the guard is dropped, at which
/// point `lock` will succeed yet again.
pub struct MutexGuard<'a, T: ?Sized> {
    lock: &'a Mutex<T>,
}

/// An owned handle to a held `Mutex`.
///
/// This guard is only available from a `Mutex` that is wrapped in an [`Arc`]. It
/// is identical to `MutexGuard`, except that rather than borrowing the `Mutex`,
/// it clones the `Arc`, incrementing the reference count. This means that
/// unlike `MutexGuard`, it will have the `'static` lifetime.
///
/// As long as you have this guard, you have exclusive access to the underlying
/// `T`. The guard internally keeps a reference-counted pointer to the original
/// `Mutex`, so even if the lock goes away, the guard remains valid.
///
/// The lock is automatically released whenever the guard is dropped, at which
/// point `lock` will succeed yet again.
///
/// [`Arc`]: std::sync::Arc
pub struct OwnedMutexGuard<T: ?Sized> {
    lock: Arc<Mutex<T>>,
}

/// A handle to a held `Mutex` that has had a function applied to it via [`MutexGuard::map`].
///
/// This can be used to hold a subfield of the protected data.
///
/// [`MutexGuard::map`]: method@MutexGuard::map
#[must_use = "if unused the Mutex will immediately unlock"]
pub struct MappedMutexGuard<'a, T: ?Sized> {
    s: &'a semaphore::Semaphore,
    data: *mut T,
    // Needed to tell the borrow checker that we are holding a `&mut T`
    marker: marker::PhantomData<&'a mut T>,
}

// As long as T: Send, it's fine to send and share Mutex<T> between threads.
// If T was not Send, sending and sharing a Mutex<T> would be bad, since you can
// access T through Mutex<T>.
unsafe impl<T> Send for Mutex<T> where T: ?Sized + Send {}
unsafe impl<T> Sync for Mutex<T> where T: ?Sized + Send {}
unsafe impl<T> Sync for MutexGuard<'_, T> where T: ?Sized + Send + Sync {}
unsafe impl<T> Sync for OwnedMutexGuard<T> where T: ?Sized + Send + Sync {}
unsafe impl<'a, T> Sync for MappedMutexGuard<'a, T> where T: ?Sized + Sync + 'a {}
unsafe impl<'a, T> Send for MappedMutexGuard<'a, T> where T: ?Sized + Send + 'a {}

/// Error returned from the [`Mutex::try_lock`], [`RwLock::try_read`] and
/// [`RwLock::try_write`] functions.
///
/// `Mutex::try_lock` operation will only fail if the mutex is already locked.
///
/// `RwLock::try_read` operation will only fail if the lock is currently held
/// by an exclusive writer.
///
/// `RwLock::try_write` operation will if lock is held by any reader or by an
/// exclusive writer.
///
/// [`Mutex::try_lock`]: Mutex::try_lock
/// [`RwLock::try_read`]: fn@super::RwLock::try_read
/// [`RwLock::try_write`]: fn@super::RwLock::try_write
#[derive(Debug)]
pub struct TryLockError(pub(super) ());

impl fmt::Display for TryLockError {
    fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result {
        write!(fmt, "operation would block")
    }
}

impl Error for TryLockError {}

#[test]
#[cfg(not(loom))]
fn bounds() {
    fn check_send<T: Send>() {}
    fn check_unpin<T: Unpin>() {}
    // This has to take a value, since the async fn's return type is unnameable.
    fn check_send_sync_val<T: Send + Sync>(_t: T) {}
    fn check_send_sync<T: Send + Sync>() {}
    fn check_static<T: 'static>() {}
    fn check_static_val<T: 'static>(_t: T) {}

    check_send::<MutexGuard<'_, u32>>();
    check_send::<OwnedMutexGuard<u32>>();
    check_unpin::<Mutex<u32>>();
    check_send_sync::<Mutex<u32>>();
    check_static::<OwnedMutexGuard<u32>>();

    let mutex = Mutex::new(1);
    check_send_sync_val(mutex.lock());
    let arc_mutex = Arc::new(Mutex::new(1));
    check_send_sync_val(arc_mutex.clone().lock_owned());
    check_static_val(arc_mutex.lock_owned());
}

impl<T: ?Sized> Mutex<T> {
    /// Creates a new lock in an unlocked state ready for use.
    ///
    /// # Examples
    ///
    /// ```
    /// use tokio::sync::Mutex;
    ///
    /// let lock = Mutex::new(5);
    /// ```
    pub fn new(t: T) -> Self
    where
        T: Sized,
    {
        Self {
            c: UnsafeCell::new(t),
            s: semaphore::Semaphore::new(1),
        }
    }

    /// Creates a new lock in an unlocked state ready for use.
    ///
    /// # Examples
    ///
    /// ```
    /// use tokio::sync::Mutex;
    ///
    /// static LOCK: Mutex<i32> = Mutex::const_new(5);
    /// ```
    #[cfg(all(feature = "parking_lot", not(all(loom, test)),))]
    #[cfg_attr(docsrs, doc(cfg(feature = "parking_lot")))]
    pub const fn const_new(t: T) -> Self
    where
        T: Sized,
    {
        Self {
            c: UnsafeCell::new(t),
            s: semaphore::Semaphore::const_new(1),
        }
    }

    /// Locks this mutex, causing the current task to yield until the lock has
    /// been acquired.  When the lock has been acquired, function returns a
    /// [`MutexGuard`].
    ///
    /// # Cancel safety
    ///
    /// This method uses a queue to fairly distribute locks in the order they
    /// were requested. Cancelling a call to `lock` makes you lose your place in
    /// the queue.
    ///
    /// # Examples
    ///
    /// ```
    /// use tokio::sync::Mutex;
    ///
    /// #[tokio::main]
    /// async fn main() {
    ///     let mutex = Mutex::new(1);
    ///
    ///     let mut n = mutex.lock().await;
    ///     *n = 2;
    /// }
    /// ```
    pub async fn lock(&self) -> MutexGuard<'_, T> {
        self.acquire().await;
        MutexGuard { lock: self }
    }

    /// Locks this mutex, causing the current task to yield until the lock has
    /// been acquired. When the lock has been acquired, this returns an
    /// [`OwnedMutexGuard`].
    ///
    /// This method is identical to [`Mutex::lock`], except that the returned
    /// guard references the `Mutex` with an [`Arc`] rather than by borrowing
    /// it. Therefore, the `Mutex` must be wrapped in an `Arc` to call this
    /// method, and the guard will live for the `'static` lifetime, as it keeps
    /// the `Mutex` alive by holding an `Arc`.
    ///
    /// # Cancel safety
    ///
    /// This method uses a queue to fairly distribute locks in the order they
    /// were requested. Cancelling a call to `lock_owned` makes you lose your
    /// place in the queue.
    ///
    /// # Examples
    ///
    /// ```
    /// use tokio::sync::Mutex;
    /// use std::sync::Arc;
    ///
    /// #[tokio::main]
    /// async fn main() {
    ///     let mutex = Arc::new(Mutex::new(1));
    ///
    ///     let mut n = mutex.clone().lock_owned().await;
    ///     *n = 2;
    /// }
    /// ```
    ///
    /// [`Arc`]: std::sync::Arc
    pub async fn lock_owned(self: Arc<Self>) -> OwnedMutexGuard<T> {
        self.acquire().await;
        OwnedMutexGuard { lock: self }
    }

    async fn acquire(&self) {
        self.s.acquire(1).await.unwrap_or_else(|_| {
            // The semaphore was closed. but, we never explicitly close it, and
            // we own it exclusively, which means that this can never happen.
            unreachable!()
        });
    }

    /// Attempts to acquire the lock, and returns [`TryLockError`] if the
    /// lock is currently held somewhere else.
    ///
    /// [`TryLockError`]: TryLockError
    /// # Examples
    ///
    /// ```
    /// use tokio::sync::Mutex;
    /// # async fn dox() -> Result<(), tokio::sync::TryLockError> {
    ///
    /// let mutex = Mutex::new(1);
    ///
    /// let n = mutex.try_lock()?;
    /// assert_eq!(*n, 1);
    /// # Ok(())
    /// # }
    /// ```
    pub fn try_lock(&self) -> Result<MutexGuard<'_, T>, TryLockError> {
        match self.s.try_acquire(1) {
            Ok(_) => Ok(MutexGuard { lock: self }),
            Err(_) => Err(TryLockError(())),
        }
    }

    /// Returns a mutable reference to the underlying data.
    ///
    /// Since this call borrows the `Mutex` mutably, no actual locking needs to
    /// take place -- the mutable borrow statically guarantees no locks exist.
    ///
    /// # Examples
    ///
    /// ```
    /// use tokio::sync::Mutex;
    ///
    /// fn main() {
    ///     let mut mutex = Mutex::new(1);
    ///
    ///     let n = mutex.get_mut();
    ///     *n = 2;
    /// }
    /// ```
    pub fn get_mut(&mut self) -> &mut T {
        unsafe {
            // Safety: This is https://github.com/rust-lang/rust/pull/76936
            &mut *self.c.get()
        }
    }

    /// Attempts to acquire the lock, and returns [`TryLockError`] if the lock
    /// is currently held somewhere else.
    ///
    /// This method is identical to [`Mutex::try_lock`], except that the
    /// returned  guard references the `Mutex` with an [`Arc`] rather than by
    /// borrowing it. Therefore, the `Mutex` must be wrapped in an `Arc` to call
    /// this method, and the guard will live for the `'static` lifetime, as it
    /// keeps the `Mutex` alive by holding an `Arc`.
    ///
    /// [`TryLockError`]: TryLockError
    /// [`Arc`]: std::sync::Arc
    /// # Examples
    ///
    /// ```
    /// use tokio::sync::Mutex;
    /// use std::sync::Arc;
    /// # async fn dox() -> Result<(), tokio::sync::TryLockError> {
    ///
    /// let mutex = Arc::new(Mutex::new(1));
    ///
    /// let n = mutex.clone().try_lock_owned()?;
    /// assert_eq!(*n, 1);
    /// # Ok(())
    /// # }
    pub fn try_lock_owned(self: Arc<Self>) -> Result<OwnedMutexGuard<T>, TryLockError> {
        match self.s.try_acquire(1) {
            Ok(_) => Ok(OwnedMutexGuard { lock: self }),
            Err(_) => Err(TryLockError(())),
        }
    }

    /// Consumes the mutex, returning the underlying data.
    /// # Examples
    ///
    /// ```
    /// use tokio::sync::Mutex;
    ///
    /// #[tokio::main]
    /// async fn main() {
    ///     let mutex = Mutex::new(1);
    ///
    ///     let n = mutex.into_inner();
    ///     assert_eq!(n, 1);
    /// }
    /// ```
    pub fn into_inner(self) -> T
    where
        T: Sized,
    {
        self.c.into_inner()
    }
}

impl<T> From<T> for Mutex<T> {
    fn from(s: T) -> Self {
        Self::new(s)
    }
}

impl<T> Default for Mutex<T>
where
    T: Default,
{
    fn default() -> Self {
        Self::new(T::default())
    }
}

impl<T> std::fmt::Debug for Mutex<T>
where
    T: std::fmt::Debug,
{
    fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
        let mut d = f.debug_struct("Mutex");
        match self.try_lock() {
            Ok(inner) => d.field("data", &*inner),
            Err(_) => d.field("data", &format_args!("<locked>")),
        };
        d.finish()
    }
}

// === impl MutexGuard ===

impl<'a, T: ?Sized> MutexGuard<'a, T> {
    /// Makes a new [`MappedMutexGuard`] for a component of the locked data.
    ///
    /// This operation cannot fail as the [`MutexGuard`] passed in already locked the mutex.
    ///
    /// This is an associated function that needs to be used as `MutexGuard::map(...)`. A method
    /// would interfere with methods of the same name on the contents of the locked data.
    ///
    /// # Examples
    ///
    /// ```
    /// use tokio::sync::{Mutex, MutexGuard};
    ///
    /// #[derive(Debug, Clone, Copy, PartialEq, Eq)]
    /// struct Foo(u32);
    ///
    /// # #[tokio::main]
    /// # async fn main() {
    /// let foo = Mutex::new(Foo(1));
    ///
    /// {
    ///     let mut mapped = MutexGuard::map(foo.lock().await, |f| &mut f.0);
    ///     *mapped = 2;
    /// }
    ///
    /// assert_eq!(Foo(2), *foo.lock().await);
    /// # }
    /// ```
    ///
    /// [`MutexGuard`]: struct@MutexGuard
    /// [`MappedMutexGuard`]: struct@MappedMutexGuard
    #[inline]
    pub fn map<U, F>(mut this: Self, f: F) -> MappedMutexGuard<'a, U>
    where
        F: FnOnce(&mut T) -> &mut U,
    {
        let data = f(&mut *this) as *mut U;
        let s = &this.lock.s;
        mem::forget(this);
        MappedMutexGuard {
            s,
            data,
            marker: marker::PhantomData,
        }
    }

    /// Attempts to make a new [`MappedMutexGuard`] for a component of the locked data. The
    /// original guard is returned if the closure returns `None`.
    ///
    /// This operation cannot fail as the [`MutexGuard`] passed in already locked the mutex.
    ///
    /// This is an associated function that needs to be used as `MutexGuard::try_map(...)`. A
    /// method would interfere with methods of the same name on the contents of the locked data.
    ///
    /// # Examples
    ///
    /// ```
    /// use tokio::sync::{Mutex, MutexGuard};
    ///
    /// #[derive(Debug, Clone, Copy, PartialEq, Eq)]
    /// struct Foo(u32);
    ///
    /// # #[tokio::main]
    /// # async fn main() {
    /// let foo = Mutex::new(Foo(1));
    ///
    /// {
    ///     let mut mapped = MutexGuard::try_map(foo.lock().await, |f| Some(&mut f.0))
    ///         .expect("should not fail");
    ///     *mapped = 2;
    /// }
    ///
    /// assert_eq!(Foo(2), *foo.lock().await);
    /// # }
    /// ```
    ///
    /// [`MutexGuard`]: struct@MutexGuard
    /// [`MappedMutexGuard`]: struct@MappedMutexGuard
    #[inline]
    pub fn try_map<U, F>(mut this: Self, f: F) -> Result<MappedMutexGuard<'a, U>, Self>
    where
        F: FnOnce(&mut T) -> Option<&mut U>,
    {
        let data = match f(&mut *this) {
            Some(data) => data as *mut U,
            None => return Err(this),
        };
        let s = &this.lock.s;
        mem::forget(this);
        Ok(MappedMutexGuard {
            s,
            data,
            marker: marker::PhantomData,
        })
    }
}

impl<T: ?Sized> Drop for MutexGuard<'_, T> {
    fn drop(&mut self) {
        self.lock.s.release(1)
    }
}

impl<T: ?Sized> Deref for MutexGuard<'_, T> {
    type Target = T;
    fn deref(&self) -> &Self::Target {
        unsafe { &*self.lock.c.get() }
    }
}

impl<T: ?Sized> DerefMut for MutexGuard<'_, T> {
    fn deref_mut(&mut self) -> &mut Self::Target {
        unsafe { &mut *self.lock.c.get() }
    }
}

impl<T: ?Sized + fmt::Debug> fmt::Debug for MutexGuard<'_, T> {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        fmt::Debug::fmt(&**self, f)
    }
}

impl<T: ?Sized + fmt::Display> fmt::Display for MutexGuard<'_, T> {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        fmt::Display::fmt(&**self, f)
    }
}

// === impl OwnedMutexGuard ===

impl<T: ?Sized> Drop for OwnedMutexGuard<T> {
    fn drop(&mut self) {
        self.lock.s.release(1)
    }
}

impl<T: ?Sized> Deref for OwnedMutexGuard<T> {
    type Target = T;
    fn deref(&self) -> &Self::Target {
        unsafe { &*self.lock.c.get() }
    }
}

impl<T: ?Sized> DerefMut for OwnedMutexGuard<T> {
    fn deref_mut(&mut self) -> &mut Self::Target {
        unsafe { &mut *self.lock.c.get() }
    }
}

impl<T: ?Sized + fmt::Debug> fmt::Debug for OwnedMutexGuard<T> {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        fmt::Debug::fmt(&**self, f)
    }
}

impl<T: ?Sized + fmt::Display> fmt::Display for OwnedMutexGuard<T> {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        fmt::Display::fmt(&**self, f)
    }
}

// === impl MappedMutexGuard ===

impl<'a, T: ?Sized> MappedMutexGuard<'a, T> {
    /// Makes a new [`MappedMutexGuard`] for a component of the locked data.
    ///
    /// This operation cannot fail as the [`MappedMutexGuard`] passed in already locked the mutex.
    ///
    /// This is an associated function that needs to be used as `MappedMutexGuard::map(...)`. A
    /// method would interfere with methods of the same name on the contents of the locked data.
    ///
    /// [`MappedMutexGuard`]: struct@MappedMutexGuard
    #[inline]
    pub fn map<U, F>(mut this: Self, f: F) -> MappedMutexGuard<'a, U>
    where
        F: FnOnce(&mut T) -> &mut U,
    {
        let data = f(&mut *this) as *mut U;
        let s = this.s;
        mem::forget(this);
        MappedMutexGuard {
            s,
            data,
            marker: marker::PhantomData,
        }
    }

    /// Attempts to make a new [`MappedMutexGuard`] for a component of the locked data. The
    /// original guard is returned if the closure returns `None`.
    ///
    /// This operation cannot fail as the [`MappedMutexGuard`] passed in already locked the mutex.
    ///
    /// This is an associated function that needs to be used as `MappedMutexGuard::try_map(...)`. A
    /// method would interfere with methods of the same name on the contents of the locked data.
    ///
    /// [`MappedMutexGuard`]: struct@MappedMutexGuard
    #[inline]
    pub fn try_map<U, F>(mut this: Self, f: F) -> Result<MappedMutexGuard<'a, U>, Self>
    where
        F: FnOnce(&mut T) -> Option<&mut U>,
    {
        let data = match f(&mut *this) {
            Some(data) => data as *mut U,
            None => return Err(this),
        };
        let s = this.s;
        mem::forget(this);
        Ok(MappedMutexGuard {
            s,
            data,
            marker: marker::PhantomData,
        })
    }
}

impl<'a, T: ?Sized> Drop for MappedMutexGuard<'a, T> {
    fn drop(&mut self) {
        self.s.release(1)
    }
}

impl<'a, T: ?Sized> Deref for MappedMutexGuard<'a, T> {
    type Target = T;
    fn deref(&self) -> &Self::Target {
        unsafe { &*self.data }
    }
}

impl<'a, T: ?Sized> DerefMut for MappedMutexGuard<'a, T> {
    fn deref_mut(&mut self) -> &mut Self::Target {
        unsafe { &mut *self.data }
    }
}

impl<'a, T: ?Sized + fmt::Debug> fmt::Debug for MappedMutexGuard<'a, T> {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        fmt::Debug::fmt(&**self, f)
    }
}

impl<'a, T: ?Sized + fmt::Display> fmt::Display for MappedMutexGuard<'a, T> {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        fmt::Display::fmt(&**self, f)
    }
}