1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267
#![cfg_attr(loom, allow(dead_code, unreachable_pub))] //! Traits, helpers, and type definitions for asynchronous I/O functionality. //! //! This module is the asynchronous version of `std::io`. Primarily, it //! defines two traits, [`AsyncRead`] and [`AsyncWrite`], which are asynchronous //! versions of the [`Read`] and [`Write`] traits in the standard library. //! //! # AsyncRead and AsyncWrite //! //! Like the standard library's [`Read`] and [`Write`] traits, [`AsyncRead`] and //! [`AsyncWrite`] provide the most general interface for reading and writing //! input and output. Unlike the standard library's traits, however, they are //! _asynchronous_ — meaning that reading from or writing to a `tokio::io` //! type will _yield_ to the Tokio scheduler when IO is not ready, rather than //! blocking. This allows other tasks to run while waiting on IO. //! //! Another difference is that `AsyncRead` and `AsyncWrite` only contain //! core methods needed to provide asynchronous reading and writing //! functionality. Instead, utility methods are defined in the [`AsyncReadExt`] //! and [`AsyncWriteExt`] extension traits. These traits are automatically //! implemented for all values that implement `AsyncRead` and `AsyncWrite` //! respectively. //! //! End users will rarely interact directly with `AsyncRead` and //! `AsyncWrite`. Instead, they will use the async functions defined in the //! extension traits. Library authors are expected to implement `AsyncRead` //! and `AsyncWrite` in order to provide types that behave like byte streams. //! //! Even with these differences, Tokio's `AsyncRead` and `AsyncWrite` traits //! can be used in almost exactly the same manner as the standard library's //! `Read` and `Write`. Most types in the standard library that implement `Read` //! and `Write` have asynchronous equivalents in `tokio` that implement //! `AsyncRead` and `AsyncWrite`, such as [`File`] and [`TcpStream`]. //! //! For example, the standard library documentation introduces `Read` by //! [demonstrating][std_example] reading some bytes from a [`std::fs::File`]. We //! can do the same with [`tokio::fs::File`][`File`]: //! //! ```no_run //! use tokio::io::{self, AsyncReadExt}; //! use tokio::fs::File; //! //! #[tokio::main] //! async fn main() -> io::Result<()> { //! let mut f = File::open("foo.txt").await?; //! let mut buffer = [0; 10]; //! //! // read up to 10 bytes //! let n = f.read(&mut buffer).await?; //! //! println!("The bytes: {:?}", &buffer[..n]); //! Ok(()) //! } //! ``` //! //! [`File`]: crate::fs::File //! [`TcpStream`]: crate::net::TcpStream //! [`std::fs::File`]: std::fs::File //! [std_example]: std::io#read-and-write //! //! ## Buffered Readers and Writers //! //! Byte-based interfaces are unwieldy and can be inefficient, as we'd need to be //! making near-constant calls to the operating system. To help with this, //! `std::io` comes with [support for _buffered_ readers and writers][stdbuf], //! and therefore, `tokio::io` does as well. //! //! Tokio provides an async version of the [`std::io::BufRead`] trait, //! [`AsyncBufRead`]; and async [`BufReader`] and [`BufWriter`] structs, which //! wrap readers and writers. These wrappers use a buffer, reducing the number //! of calls and providing nicer methods for accessing exactly what you want. //! //! For example, [`BufReader`] works with the [`AsyncBufRead`] trait to add //! extra methods to any async reader: //! //! ```no_run //! use tokio::io::{self, BufReader, AsyncBufReadExt}; //! use tokio::fs::File; //! //! #[tokio::main] //! async fn main() -> io::Result<()> { //! let f = File::open("foo.txt").await?; //! let mut reader = BufReader::new(f); //! let mut buffer = String::new(); //! //! // read a line into buffer //! reader.read_line(&mut buffer).await?; //! //! println!("{}", buffer); //! Ok(()) //! } //! ``` //! //! [`BufWriter`] doesn't add any new ways of writing; it just buffers every call //! to [`write`](crate::io::AsyncWriteExt::write). However, you **must** flush //! [`BufWriter`] to ensure that any buffered data is written. //! //! ```no_run //! use tokio::io::{self, BufWriter, AsyncWriteExt}; //! use tokio::fs::File; //! //! #[tokio::main] //! async fn main() -> io::Result<()> { //! let f = File::create("foo.txt").await?; //! { //! let mut writer = BufWriter::new(f); //! //! // Write a byte to the buffer. //! writer.write(&[42u8]).await?; //! //! // Flush the buffer before it goes out of scope. //! writer.flush().await?; //! //! } // Unless flushed or shut down, the contents of the buffer is discarded on drop. //! //! Ok(()) //! } //! ``` //! //! [stdbuf]: std::io#bufreader-and-bufwriter //! [`std::io::BufRead`]: std::io::BufRead //! [`AsyncBufRead`]: crate::io::AsyncBufRead //! [`BufReader`]: crate::io::BufReader //! [`BufWriter`]: crate::io::BufWriter //! //! ## Implementing AsyncRead and AsyncWrite //! //! Because they are traits, we can implement [`AsyncRead`] and [`AsyncWrite`] for //! our own types, as well. Note that these traits must only be implemented for //! non-blocking I/O types that integrate with the futures type system. In //! other words, these types must never block the thread, and instead the //! current task is notified when the I/O resource is ready. //! //! ## Conversion to and from Sink/Stream //! //! It is often convenient to encapsulate the reading and writing of //! bytes and instead work with a [`Sink`] or [`Stream`] of some data //! type that is encoded as bytes and/or decoded from bytes. Tokio //! provides some utility traits in the [tokio-util] crate that //! abstract the asynchronous buffering that is required and allows //! you to write [`Encoder`] and [`Decoder`] functions working with a //! buffer of bytes, and then use that ["codec"] to transform anything //! that implements [`AsyncRead`] and [`AsyncWrite`] into a `Sink`/`Stream` of //! your structured data. //! //! [tokio-util]: https://docs.rs/tokio-util/0.6/tokio_util/codec/index.html //! //! # Standard input and output //! //! Tokio provides asynchronous APIs to standard [input], [output], and [error]. //! These APIs are very similar to the ones provided by `std`, but they also //! implement [`AsyncRead`] and [`AsyncWrite`]. //! //! Note that the standard input / output APIs **must** be used from the //! context of the Tokio runtime, as they require Tokio-specific features to //! function. Calling these functions outside of a Tokio runtime will panic. //! //! [input]: fn@stdin //! [output]: fn@stdout //! [error]: fn@stderr //! //! # `std` re-exports //! //! Additionally, [`Error`], [`ErrorKind`], [`Result`], and [`SeekFrom`] are //! re-exported from `std::io` for ease of use. //! //! [`AsyncRead`]: trait@AsyncRead //! [`AsyncWrite`]: trait@AsyncWrite //! [`AsyncReadExt`]: trait@AsyncReadExt //! [`AsyncWriteExt`]: trait@AsyncWriteExt //! ["codec"]: https://docs.rs/tokio-util/0.6/tokio_util/codec/index.html //! [`Encoder`]: https://docs.rs/tokio-util/0.6/tokio_util/codec/trait.Encoder.html //! [`Decoder`]: https://docs.rs/tokio-util/0.6/tokio_util/codec/trait.Decoder.html //! [`Error`]: struct@Error //! [`ErrorKind`]: enum@ErrorKind //! [`Result`]: type@Result //! [`Read`]: std::io::Read //! [`SeekFrom`]: enum@SeekFrom //! [`Sink`]: https://docs.rs/futures/0.3/futures/sink/trait.Sink.html //! [`Stream`]: https://docs.rs/futures/0.3/futures/stream/trait.Stream.html //! [`Write`]: std::io::Write cfg_io_blocking! { pub(crate) mod blocking; } mod async_buf_read; pub use self::async_buf_read::AsyncBufRead; mod async_read; pub use self::async_read::AsyncRead; mod async_seek; pub use self::async_seek::AsyncSeek; mod async_write; pub use self::async_write::AsyncWrite; mod read_buf; pub use self::read_buf::ReadBuf; // Re-export some types from `std::io` so that users don't have to deal // with conflicts when `use`ing `tokio::io` and `std::io`. #[doc(no_inline)] pub use std::io::{Error, ErrorKind, Result, SeekFrom}; cfg_io_driver_impl! { pub(crate) mod driver; cfg_net! { pub use driver::{Interest, Ready}; } mod poll_evented; #[cfg(not(loom))] pub(crate) use poll_evented::PollEvented; } cfg_net_unix! { mod async_fd; pub mod unix { //! Asynchronous IO structures specific to Unix-like operating systems. pub use super::async_fd::{AsyncFd, AsyncFdReadyGuard, AsyncFdReadyMutGuard, TryIoError}; } } cfg_io_std! { mod stdio_common; mod stderr; pub use stderr::{stderr, Stderr}; mod stdin; pub use stdin::{stdin, Stdin}; mod stdout; pub use stdout::{stdout, Stdout}; } cfg_io_util! { mod split; pub use split::{split, ReadHalf, WriteHalf}; pub(crate) mod seek; pub(crate) mod util; pub use util::{ copy, copy_bidirectional, copy_buf, duplex, empty, repeat, sink, AsyncBufReadExt, AsyncReadExt, AsyncSeekExt, AsyncWriteExt, BufReader, BufStream, BufWriter, DuplexStream, Empty, Lines, Repeat, Sink, Split, Take, }; } cfg_not_io_util! { cfg_process! { pub(crate) mod util; } } cfg_io_blocking! { /// Types in this module can be mocked out in tests. mod sys { // TODO: don't rename pub(crate) use crate::blocking::spawn_blocking as run; pub(crate) use crate::blocking::JoinHandle as Blocking; } }