1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
use crate::io::driver::{Handle, Interest, ReadyEvent, Registration};

use mio::unix::SourceFd;
use std::io;
use std::os::unix::io::{AsRawFd, RawFd};
use std::{task::Context, task::Poll};

/// Associates an IO object backed by a Unix file descriptor with the tokio
/// reactor, allowing for readiness to be polled. The file descriptor must be of
/// a type that can be used with the OS polling facilities (ie, `poll`, `epoll`,
/// `kqueue`, etc), such as a network socket or pipe, and the file descriptor
/// must have the nonblocking mode set to true.
///
/// Creating an AsyncFd registers the file descriptor with the current tokio
/// Reactor, allowing you to directly await the file descriptor being readable
/// or writable. Once registered, the file descriptor remains registered until
/// the AsyncFd is dropped.
///
/// The AsyncFd takes ownership of an arbitrary object to represent the IO
/// object. It is intended that this object will handle closing the file
/// descriptor when it is dropped, avoiding resource leaks and ensuring that the
/// AsyncFd can clean up the registration before closing the file descriptor.
/// The [`AsyncFd::into_inner`] function can be used to extract the inner object
/// to retake control from the tokio IO reactor.
///
/// The inner object is required to implement [`AsRawFd`]. This file descriptor
/// must not change while [`AsyncFd`] owns the inner object, i.e. the
/// [`AsRawFd::as_raw_fd`] method on the inner type must always return the same
/// file descriptor when called multiple times. Failure to uphold this results
/// in unspecified behavior in the IO driver, which may include breaking
/// notifications for other sockets/etc.
///
/// Polling for readiness is done by calling the async functions [`readable`]
/// and [`writable`]. These functions complete when the associated readiness
/// condition is observed. Any number of tasks can query the same `AsyncFd` in
/// parallel, on the same or different conditions.
///
/// On some platforms, the readiness detecting mechanism relies on
/// edge-triggered notifications. This means that the OS will only notify Tokio
/// when the file descriptor transitions from not-ready to ready. For this to
/// work you should first try to read or write and only poll for readiness
/// if that fails with an error of [`std::io::ErrorKind::WouldBlock`].
///
/// Tokio internally tracks when it has received a ready notification, and when
/// readiness checking functions like [`readable`] and [`writable`] are called,
/// if the readiness flag is set, these async functions will complete
/// immediately. This however does mean that it is critical to ensure that this
/// ready flag is cleared when (and only when) the file descriptor ceases to be
/// ready. The [`AsyncFdReadyGuard`] returned from readiness checking functions
/// serves this function; after calling a readiness-checking async function,
/// you must use this [`AsyncFdReadyGuard`] to signal to tokio whether the file
/// descriptor is no longer in a ready state.
///
/// ## Use with to a poll-based API
///
/// In some cases it may be desirable to use `AsyncFd` from APIs similar to
/// [`TcpStream::poll_read_ready`]. The [`AsyncFd::poll_read_ready`] and
/// [`AsyncFd::poll_write_ready`] functions are provided for this purpose.
/// Because these functions don't create a future to hold their state, they have
/// the limitation that only one task can wait on each direction (read or write)
/// at a time.
///
/// # Examples
///
/// This example shows how to turn [`std::net::TcpStream`] asynchronous using
/// `AsyncFd`.  It implements `read` as an async fn, and `AsyncWrite` as a trait
/// to show how to implement both approaches.
///
/// ```no_run
/// use futures::ready;
/// use std::io::{self, Read, Write};
/// use std::net::TcpStream;
/// use std::pin::Pin;
/// use std::task::{Context, Poll};
/// use tokio::io::AsyncWrite;
/// use tokio::io::unix::AsyncFd;
///
/// pub struct AsyncTcpStream {
///     inner: AsyncFd<TcpStream>,
/// }
///
/// impl AsyncTcpStream {
///     pub fn new(tcp: TcpStream) -> io::Result<Self> {
///         Ok(Self {
///             inner: AsyncFd::new(tcp)?,
///         })
///     }
///
///     pub async fn read(&self, out: &mut [u8]) -> io::Result<usize> {
///         loop {
///             let mut guard = self.inner.readable().await?;
///
///             match guard.try_io(|inner| inner.get_ref().read(out)) {
///                 Ok(result) => return result,
///                 Err(_would_block) => continue,
///             }
///         }
///     }
/// }
///
/// impl AsyncWrite for AsyncTcpStream {
///     fn poll_write(
///         self: Pin<&mut Self>,
///         cx: &mut Context<'_>,
///         buf: &[u8]
///     ) -> Poll<io::Result<usize>> {
///         loop {
///             let mut guard = ready!(self.inner.poll_write_ready(cx))?;
///
///             match guard.try_io(|inner| inner.get_ref().write(buf)) {
///                 Ok(result) => return Poll::Ready(result),
///                 Err(_would_block) => continue,
///             }
///         }
///     }
///
///     fn poll_flush(
///         self: Pin<&mut Self>,
///         cx: &mut Context<'_>,
///     ) -> Poll<io::Result<()>> {
///         // tcp flush is a no-op
///         Poll::Ready(Ok(()))
///     }
///
///     fn poll_shutdown(
///         self: Pin<&mut Self>,
///         cx: &mut Context<'_>,
///     ) -> Poll<io::Result<()>> {
///         self.inner.get_ref().shutdown(std::net::Shutdown::Write)?;
///         Poll::Ready(Ok(()))
///     }
/// }
/// ```
///
/// [`readable`]: method@Self::readable
/// [`writable`]: method@Self::writable
/// [`AsyncFdReadyGuard`]: struct@self::AsyncFdReadyGuard
/// [`TcpStream::poll_read_ready`]: struct@crate::net::TcpStream
pub struct AsyncFd<T: AsRawFd> {
    registration: Registration,
    inner: Option<T>,
}

/// Represents an IO-ready event detected on a particular file descriptor that
/// has not yet been acknowledged. This is a `must_use` structure to help ensure
/// that you do not forget to explicitly clear (or not clear) the event.
///
/// This type exposes an immutable reference to the underlying IO object.
#[must_use = "You must explicitly choose whether to clear the readiness state by calling a method on ReadyGuard"]
pub struct AsyncFdReadyGuard<'a, T: AsRawFd> {
    async_fd: &'a AsyncFd<T>,
    event: Option<ReadyEvent>,
}

/// Represents an IO-ready event detected on a particular file descriptor that
/// has not yet been acknowledged. This is a `must_use` structure to help ensure
/// that you do not forget to explicitly clear (or not clear) the event.
///
/// This type exposes a mutable reference to the underlying IO object.
#[must_use = "You must explicitly choose whether to clear the readiness state by calling a method on ReadyGuard"]
pub struct AsyncFdReadyMutGuard<'a, T: AsRawFd> {
    async_fd: &'a mut AsyncFd<T>,
    event: Option<ReadyEvent>,
}

const ALL_INTEREST: Interest = Interest::READABLE.add(Interest::WRITABLE);

impl<T: AsRawFd> AsyncFd<T> {
    #[inline]
    /// Creates an AsyncFd backed by (and taking ownership of) an object
    /// implementing [`AsRawFd`]. The backing file descriptor is cached at the
    /// time of creation.
    ///
    /// This method must be called in the context of a tokio runtime.
    pub fn new(inner: T) -> io::Result<Self>
    where
        T: AsRawFd,
    {
        Self::with_interest(inner, ALL_INTEREST)
    }

    #[inline]
    /// Creates new instance as `new` with additional ability to customize interest,
    /// allowing to specify whether file descriptor will be polled for read, write or both.
    pub fn with_interest(inner: T, interest: Interest) -> io::Result<Self>
    where
        T: AsRawFd,
    {
        Self::new_with_handle_and_interest(inner, Handle::current(), interest)
    }

    pub(crate) fn new_with_handle_and_interest(
        inner: T,
        handle: Handle,
        interest: Interest,
    ) -> io::Result<Self> {
        let fd = inner.as_raw_fd();

        let registration =
            Registration::new_with_interest_and_handle(&mut SourceFd(&fd), interest, handle)?;

        Ok(AsyncFd {
            registration,
            inner: Some(inner),
        })
    }

    /// Returns a shared reference to the backing object of this [`AsyncFd`]
    #[inline]
    pub fn get_ref(&self) -> &T {
        self.inner.as_ref().unwrap()
    }

    /// Returns a mutable reference to the backing object of this [`AsyncFd`]
    #[inline]
    pub fn get_mut(&mut self) -> &mut T {
        self.inner.as_mut().unwrap()
    }

    fn take_inner(&mut self) -> Option<T> {
        let fd = self.inner.as_ref().map(AsRawFd::as_raw_fd);

        if let Some(fd) = fd {
            let _ = self.registration.deregister(&mut SourceFd(&fd));
        }

        self.inner.take()
    }

    /// Deregisters this file descriptor and returns ownership of the backing
    /// object.
    pub fn into_inner(mut self) -> T {
        self.take_inner().unwrap()
    }

    /// Polls for read readiness.
    ///
    /// If the file descriptor is not currently ready for reading, this method
    /// will store a clone of the [`Waker`] from the provided [`Context`]. When the
    /// file descriptor becomes ready for reading, [`Waker::wake`] will be called.
    ///
    /// Note that on multiple calls to [`poll_read_ready`] or
    /// [`poll_read_ready_mut`], only the `Waker` from the `Context` passed to the
    /// most recent call is scheduled to receive a wakeup. (However,
    /// [`poll_write_ready`] retains a second, independent waker).
    ///
    /// This method is intended for cases where creating and pinning a future
    /// via [`readable`] is not feasible. Where possible, using [`readable`] is
    /// preferred, as this supports polling from multiple tasks at once.
    ///
    /// This method takes `&self`, so it is possible to call this method
    /// concurrently with other methods on this struct. This method only
    /// provides shared access to the inner IO resource when handling the
    /// [`AsyncFdReadyGuard`].
    ///
    /// [`poll_read_ready`]: method@Self::poll_read_ready
    /// [`poll_read_ready_mut`]: method@Self::poll_read_ready_mut
    /// [`poll_write_ready`]: method@Self::poll_write_ready
    /// [`readable`]: method@Self::readable
    /// [`Context`]: struct@std::task::Context
    /// [`Waker`]: struct@std::task::Waker
    /// [`Waker::wake`]: method@std::task::Waker::wake
    pub fn poll_read_ready<'a>(
        &'a self,
        cx: &mut Context<'_>,
    ) -> Poll<io::Result<AsyncFdReadyGuard<'a, T>>> {
        let event = ready!(self.registration.poll_read_ready(cx))?;

        Ok(AsyncFdReadyGuard {
            async_fd: self,
            event: Some(event),
        })
        .into()
    }

    /// Polls for read readiness.
    ///
    /// If the file descriptor is not currently ready for reading, this method
    /// will store a clone of the [`Waker`] from the provided [`Context`]. When the
    /// file descriptor becomes ready for reading, [`Waker::wake`] will be called.
    ///
    /// Note that on multiple calls to [`poll_read_ready`] or
    /// [`poll_read_ready_mut`], only the `Waker` from the `Context` passed to the
    /// most recent call is scheduled to receive a wakeup. (However,
    /// [`poll_write_ready`] retains a second, independent waker).
    ///
    /// This method is intended for cases where creating and pinning a future
    /// via [`readable`] is not feasible. Where possible, using [`readable`] is
    /// preferred, as this supports polling from multiple tasks at once.
    ///
    /// This method takes `&mut self`, so it is possible to access the inner IO
    /// resource mutably when handling the [`AsyncFdReadyMutGuard`].
    ///
    /// [`poll_read_ready`]: method@Self::poll_read_ready
    /// [`poll_read_ready_mut`]: method@Self::poll_read_ready_mut
    /// [`poll_write_ready`]: method@Self::poll_write_ready
    /// [`readable`]: method@Self::readable
    /// [`Context`]: struct@std::task::Context
    /// [`Waker`]: struct@std::task::Waker
    /// [`Waker::wake`]: method@std::task::Waker::wake
    pub fn poll_read_ready_mut<'a>(
        &'a mut self,
        cx: &mut Context<'_>,
    ) -> Poll<io::Result<AsyncFdReadyMutGuard<'a, T>>> {
        let event = ready!(self.registration.poll_read_ready(cx))?;

        Ok(AsyncFdReadyMutGuard {
            async_fd: self,
            event: Some(event),
        })
        .into()
    }

    /// Polls for write readiness.
    ///
    /// If the file descriptor is not currently ready for writing, this method
    /// will store a clone of the [`Waker`] from the provided [`Context`]. When the
    /// file descriptor becomes ready for writing, [`Waker::wake`] will be called.
    ///
    /// Note that on multiple calls to [`poll_write_ready`] or
    /// [`poll_write_ready_mut`], only the `Waker` from the `Context` passed to the
    /// most recent call is scheduled to receive a wakeup. (However,
    /// [`poll_read_ready`] retains a second, independent waker).
    ///
    /// This method is intended for cases where creating and pinning a future
    /// via [`writable`] is not feasible. Where possible, using [`writable`] is
    /// preferred, as this supports polling from multiple tasks at once.
    ///
    /// This method takes `&self`, so it is possible to call this method
    /// concurrently with other methods on this struct. This method only
    /// provides shared access to the inner IO resource when handling the
    /// [`AsyncFdReadyGuard`].
    ///
    /// [`poll_read_ready`]: method@Self::poll_read_ready
    /// [`poll_write_ready`]: method@Self::poll_write_ready
    /// [`poll_write_ready_mut`]: method@Self::poll_write_ready_mut
    /// [`writable`]: method@Self::readable
    /// [`Context`]: struct@std::task::Context
    /// [`Waker`]: struct@std::task::Waker
    /// [`Waker::wake`]: method@std::task::Waker::wake
    pub fn poll_write_ready<'a>(
        &'a self,
        cx: &mut Context<'_>,
    ) -> Poll<io::Result<AsyncFdReadyGuard<'a, T>>> {
        let event = ready!(self.registration.poll_write_ready(cx))?;

        Ok(AsyncFdReadyGuard {
            async_fd: self,
            event: Some(event),
        })
        .into()
    }

    /// Polls for write readiness.
    ///
    /// If the file descriptor is not currently ready for writing, this method
    /// will store a clone of the [`Waker`] from the provided [`Context`]. When the
    /// file descriptor becomes ready for writing, [`Waker::wake`] will be called.
    ///
    /// Note that on multiple calls to [`poll_write_ready`] or
    /// [`poll_write_ready_mut`], only the `Waker` from the `Context` passed to the
    /// most recent call is scheduled to receive a wakeup. (However,
    /// [`poll_read_ready`] retains a second, independent waker).
    ///
    /// This method is intended for cases where creating and pinning a future
    /// via [`writable`] is not feasible. Where possible, using [`writable`] is
    /// preferred, as this supports polling from multiple tasks at once.
    ///
    /// This method takes `&mut self`, so it is possible to access the inner IO
    /// resource mutably when handling the [`AsyncFdReadyMutGuard`].
    ///
    /// [`poll_read_ready`]: method@Self::poll_read_ready
    /// [`poll_write_ready`]: method@Self::poll_write_ready
    /// [`poll_write_ready_mut`]: method@Self::poll_write_ready_mut
    /// [`writable`]: method@Self::readable
    /// [`Context`]: struct@std::task::Context
    /// [`Waker`]: struct@std::task::Waker
    /// [`Waker::wake`]: method@std::task::Waker::wake
    pub fn poll_write_ready_mut<'a>(
        &'a mut self,
        cx: &mut Context<'_>,
    ) -> Poll<io::Result<AsyncFdReadyMutGuard<'a, T>>> {
        let event = ready!(self.registration.poll_write_ready(cx))?;

        Ok(AsyncFdReadyMutGuard {
            async_fd: self,
            event: Some(event),
        })
        .into()
    }

    async fn readiness(&self, interest: Interest) -> io::Result<AsyncFdReadyGuard<'_, T>> {
        let event = self.registration.readiness(interest).await?;

        Ok(AsyncFdReadyGuard {
            async_fd: self,
            event: Some(event),
        })
    }

    async fn readiness_mut(
        &mut self,
        interest: Interest,
    ) -> io::Result<AsyncFdReadyMutGuard<'_, T>> {
        let event = self.registration.readiness(interest).await?;

        Ok(AsyncFdReadyMutGuard {
            async_fd: self,
            event: Some(event),
        })
    }

    /// Waits for the file descriptor to become readable, returning a
    /// [`AsyncFdReadyGuard`] that must be dropped to resume read-readiness
    /// polling.
    ///
    /// This method takes `&self`, so it is possible to call this method
    /// concurrently with other methods on this struct. This method only
    /// provides shared access to the inner IO resource when handling the
    /// [`AsyncFdReadyGuard`].
    #[allow(clippy::needless_lifetimes)] // The lifetime improves rustdoc rendering.
    pub async fn readable<'a>(&'a self) -> io::Result<AsyncFdReadyGuard<'a, T>> {
        self.readiness(Interest::READABLE).await
    }

    /// Waits for the file descriptor to become readable, returning a
    /// [`AsyncFdReadyMutGuard`] that must be dropped to resume read-readiness
    /// polling.
    ///
    /// This method takes `&mut self`, so it is possible to access the inner IO
    /// resource mutably when handling the [`AsyncFdReadyMutGuard`].
    #[allow(clippy::needless_lifetimes)] // The lifetime improves rustdoc rendering.
    pub async fn readable_mut<'a>(&'a mut self) -> io::Result<AsyncFdReadyMutGuard<'a, T>> {
        self.readiness_mut(Interest::READABLE).await
    }

    /// Waits for the file descriptor to become writable, returning a
    /// [`AsyncFdReadyGuard`] that must be dropped to resume write-readiness
    /// polling.
    ///
    /// This method takes `&self`, so it is possible to call this method
    /// concurrently with other methods on this struct. This method only
    /// provides shared access to the inner IO resource when handling the
    /// [`AsyncFdReadyGuard`].
    #[allow(clippy::needless_lifetimes)] // The lifetime improves rustdoc rendering.
    pub async fn writable<'a>(&'a self) -> io::Result<AsyncFdReadyGuard<'a, T>> {
        self.readiness(Interest::WRITABLE).await
    }

    /// Waits for the file descriptor to become writable, returning a
    /// [`AsyncFdReadyMutGuard`] that must be dropped to resume write-readiness
    /// polling.
    ///
    /// This method takes `&mut self`, so it is possible to access the inner IO
    /// resource mutably when handling the [`AsyncFdReadyMutGuard`].
    #[allow(clippy::needless_lifetimes)] // The lifetime improves rustdoc rendering.
    pub async fn writable_mut<'a>(&'a mut self) -> io::Result<AsyncFdReadyMutGuard<'a, T>> {
        self.readiness_mut(Interest::WRITABLE).await
    }
}

impl<T: AsRawFd> AsRawFd for AsyncFd<T> {
    fn as_raw_fd(&self) -> RawFd {
        self.inner.as_ref().unwrap().as_raw_fd()
    }
}

impl<T: std::fmt::Debug + AsRawFd> std::fmt::Debug for AsyncFd<T> {
    fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
        f.debug_struct("AsyncFd")
            .field("inner", &self.inner)
            .finish()
    }
}

impl<T: AsRawFd> Drop for AsyncFd<T> {
    fn drop(&mut self) {
        let _ = self.take_inner();
    }
}

impl<'a, Inner: AsRawFd> AsyncFdReadyGuard<'a, Inner> {
    /// Indicates to tokio that the file descriptor is no longer ready. The
    /// internal readiness flag will be cleared, and tokio will wait for the
    /// next edge-triggered readiness notification from the OS.
    ///
    /// It is critical that this function not be called unless your code
    /// _actually observes_ that the file descriptor is _not_ ready. Do not call
    /// it simply because, for example, a read succeeded; it should be called
    /// when a read is observed to block.
    ///
    /// [`drop`]: method@std::mem::drop
    pub fn clear_ready(&mut self) {
        if let Some(event) = self.event.take() {
            self.async_fd.registration.clear_readiness(event);
        }
    }

    /// This method should be invoked when you intentionally want to keep the
    /// ready flag asserted.
    ///
    /// While this function is itself a no-op, it satisfies the `#[must_use]`
    /// constraint on the [`AsyncFdReadyGuard`] type.
    pub fn retain_ready(&mut self) {
        // no-op
    }

    /// Performs the provided IO operation.
    ///
    /// If `f` returns a [`WouldBlock`] error, the readiness state associated
    /// with this file descriptor is cleared, and the method returns
    /// `Err(TryIoError::WouldBlock)`. You will typically need to poll the
    /// `AsyncFd` again when this happens.
    ///
    /// This method helps ensure that the readiness state of the underlying file
    /// descriptor remains in sync with the tokio-side readiness state, by
    /// clearing the tokio-side state only when a [`WouldBlock`] condition
    /// occurs. It is the responsibility of the caller to ensure that `f`
    /// returns [`WouldBlock`] only if the file descriptor that originated this
    /// `AsyncFdReadyGuard` no longer expresses the readiness state that was queried to
    /// create this `AsyncFdReadyGuard`.
    ///
    /// [`WouldBlock`]: std::io::ErrorKind::WouldBlock
    // Alias for old name in 0.x
    #[cfg_attr(docsrs, doc(alias = "with_io"))]
    pub fn try_io<R>(
        &mut self,
        f: impl FnOnce(&AsyncFd<Inner>) -> io::Result<R>,
    ) -> Result<io::Result<R>, TryIoError> {
        let result = f(self.async_fd);

        if let Err(e) = result.as_ref() {
            if e.kind() == io::ErrorKind::WouldBlock {
                self.clear_ready();
            }
        }

        match result {
            Err(err) if err.kind() == io::ErrorKind::WouldBlock => Err(TryIoError(())),
            result => Ok(result),
        }
    }

    /// Returns a shared reference to the inner [`AsyncFd`].
    pub fn get_ref(&self) -> &AsyncFd<Inner> {
        self.async_fd
    }

    /// Returns a shared reference to the backing object of the inner [`AsyncFd`].
    pub fn get_inner(&self) -> &Inner {
        self.get_ref().get_ref()
    }
}

impl<'a, Inner: AsRawFd> AsyncFdReadyMutGuard<'a, Inner> {
    /// Indicates to tokio that the file descriptor is no longer ready. The
    /// internal readiness flag will be cleared, and tokio will wait for the
    /// next edge-triggered readiness notification from the OS.
    ///
    /// It is critical that this function not be called unless your code
    /// _actually observes_ that the file descriptor is _not_ ready. Do not call
    /// it simply because, for example, a read succeeded; it should be called
    /// when a read is observed to block.
    ///
    /// [`drop`]: method@std::mem::drop
    pub fn clear_ready(&mut self) {
        if let Some(event) = self.event.take() {
            self.async_fd.registration.clear_readiness(event);
        }
    }

    /// This method should be invoked when you intentionally want to keep the
    /// ready flag asserted.
    ///
    /// While this function is itself a no-op, it satisfies the `#[must_use]`
    /// constraint on the [`AsyncFdReadyGuard`] type.
    pub fn retain_ready(&mut self) {
        // no-op
    }

    /// Performs the provided IO operation.
    ///
    /// If `f` returns a [`WouldBlock`] error, the readiness state associated
    /// with this file descriptor is cleared, and the method returns
    /// `Err(TryIoError::WouldBlock)`. You will typically need to poll the
    /// `AsyncFd` again when this happens.
    ///
    /// This method helps ensure that the readiness state of the underlying file
    /// descriptor remains in sync with the tokio-side readiness state, by
    /// clearing the tokio-side state only when a [`WouldBlock`] condition
    /// occurs. It is the responsibility of the caller to ensure that `f`
    /// returns [`WouldBlock`] only if the file descriptor that originated this
    /// `AsyncFdReadyGuard` no longer expresses the readiness state that was queried to
    /// create this `AsyncFdReadyGuard`.
    ///
    /// [`WouldBlock`]: std::io::ErrorKind::WouldBlock
    pub fn try_io<R>(
        &mut self,
        f: impl FnOnce(&mut AsyncFd<Inner>) -> io::Result<R>,
    ) -> Result<io::Result<R>, TryIoError> {
        let result = f(&mut self.async_fd);

        if let Err(e) = result.as_ref() {
            if e.kind() == io::ErrorKind::WouldBlock {
                self.clear_ready();
            }
        }

        match result {
            Err(err) if err.kind() == io::ErrorKind::WouldBlock => Err(TryIoError(())),
            result => Ok(result),
        }
    }

    /// Returns a shared reference to the inner [`AsyncFd`].
    pub fn get_ref(&self) -> &AsyncFd<Inner> {
        self.async_fd
    }

    /// Returns a mutable reference to the inner [`AsyncFd`].
    pub fn get_mut(&mut self) -> &mut AsyncFd<Inner> {
        self.async_fd
    }

    /// Returns a shared reference to the backing object of the inner [`AsyncFd`].
    pub fn get_inner(&self) -> &Inner {
        self.get_ref().get_ref()
    }

    /// Returns a mutable reference to the backing object of the inner [`AsyncFd`].
    pub fn get_inner_mut(&mut self) -> &mut Inner {
        self.get_mut().get_mut()
    }
}

impl<'a, T: std::fmt::Debug + AsRawFd> std::fmt::Debug for AsyncFdReadyGuard<'a, T> {
    fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
        f.debug_struct("ReadyGuard")
            .field("async_fd", &self.async_fd)
            .finish()
    }
}

impl<'a, T: std::fmt::Debug + AsRawFd> std::fmt::Debug for AsyncFdReadyMutGuard<'a, T> {
    fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
        f.debug_struct("MutReadyGuard")
            .field("async_fd", &self.async_fd)
            .finish()
    }
}

/// The error type returned by [`try_io`].
///
/// This error indicates that the IO resource returned a [`WouldBlock`] error.
///
/// [`WouldBlock`]: std::io::ErrorKind::WouldBlock
/// [`try_io`]: method@AsyncFdReadyGuard::try_io
#[derive(Debug)]
pub struct TryIoError(());