Files
aho_corasick
arrayvec
base64
bech32
bitcoin
bitcoin_hashes
bitcoin_rest
bitcoincore_rpc
bitcoincore_rpc_json
bitflags
block_buffer
byteorder
bytes
cfg_if
chainseeker
chainseeker_server
cpufeatures
crossbeam_channel
crossbeam_deque
crossbeam_epoch
crossbeam_utils
digest
either
encoding_rs
fnv
foreign_types
foreign_types_shared
form_urlencoded
futures_channel
futures_core
futures_io
futures_macro
futures_sink
futures_task
futures_util
async_await
future
io
lock
sink
stream
task
generic_array
getrandom
h2
hashbrown
hex
http
http_body
httparse
httpdate
hyper
hyper_tls
idna
indexmap
input_buffer
ipnet
itoa
jsonrpc
lazy_static
libc
librocksdb_sys
log
matches
memchr
memoffset
mime
mio
native_tls
nodrop
num_cpus
num_format
once_cell
opaque_debug
openssl
openssl_probe
openssl_sys
percent_encoding
pin_project
pin_project_internal
pin_project_lite
pin_utils
ppv_lite86
proc_macro2
proc_macro_hack
proc_macro_nested
quote
rand
rand_chacha
rand_core
rayon
rayon_core
regex
regex_syntax
reqwest
rocksdb
routerify
ryu
scopeguard
secp256k1
secp256k1_sys
serde
serde_derive
serde_json
serde_urlencoded
sha1
signal_hook_registry
slab
socket2
syn
thiserror
thiserror_impl
tinyvec
tinyvec_macros
tokio
future
io
loom
macros
net
park
runtime
signal
sync
task
time
util
tokio_macros
tokio_native_tls
tokio_tungstenite
tokio_util
toml
tower_service
tracing
tracing_core
try_lock
tungstenite
typenum
unicode_bidi
unicode_normalization
unicode_xid
url
utf8
want
zmq
zmq_sys
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
use crate::job::*;
use crate::registry::Registry;
use crate::unwind;
use std::mem;
use std::sync::Arc;

/// Fires off a task into the Rayon threadpool in the "static" or
/// "global" scope.  Just like a standard thread, this task is not
/// tied to the current stack frame, and hence it cannot hold any
/// references other than those with `'static` lifetime. If you want
/// to spawn a task that references stack data, use [the `scope()`
/// function][scope] to create a scope.
///
/// [scope]: fn.scope.html
///
/// Since tasks spawned with this function cannot hold references into
/// the enclosing stack frame, you almost certainly want to use a
/// `move` closure as their argument (otherwise, the closure will
/// typically hold references to any variables from the enclosing
/// function that you happen to use).
///
/// This API assumes that the closure is executed purely for its
/// side-effects (i.e., it might send messages, modify data protected
/// by a mutex, or some such thing).
///
/// There is no guaranteed order of execution for spawns, given that
/// other threads may steal tasks at any time. However, they are
/// generally prioritized in a LIFO order on the thread from which
/// they were spawned. Other threads always steal from the other end of
/// the deque, like FIFO order.  The idea is that "recent" tasks are
/// most likely to be fresh in the local CPU's cache, while other
/// threads can steal older "stale" tasks.  For an alternate approach,
/// consider [`spawn_fifo()`] instead.
///
/// [`spawn_fifo()`]: fn.spawn_fifo.html
///
/// # Panic handling
///
/// If this closure should panic, the resulting panic will be
/// propagated to the panic handler registered in the `ThreadPoolBuilder`,
/// if any.  See [`ThreadPoolBuilder::panic_handler()`][ph] for more
/// details.
///
/// [ph]: struct.ThreadPoolBuilder.html#method.panic_handler
///
/// # Examples
///
/// This code creates a Rayon task that increments a global counter.
///
/// ```rust
/// # use rayon_core as rayon;
/// use std::sync::atomic::{AtomicUsize, Ordering, ATOMIC_USIZE_INIT};
///
/// static GLOBAL_COUNTER: AtomicUsize = ATOMIC_USIZE_INIT;
///
/// rayon::spawn(move || {
///     GLOBAL_COUNTER.fetch_add(1, Ordering::SeqCst);
/// });
/// ```
pub fn spawn<F>(func: F)
where
    F: FnOnce() + Send + 'static,
{
    // We assert that current registry has not terminated.
    unsafe { spawn_in(func, &Registry::current()) }
}

/// Spawns an asynchronous job in `registry.`
///
/// Unsafe because `registry` must not yet have terminated.
pub(super) unsafe fn spawn_in<F>(func: F, registry: &Arc<Registry>)
where
    F: FnOnce() + Send + 'static,
{
    // We assert that this does not hold any references (we know
    // this because of the `'static` bound in the inferface);
    // moreover, we assert that the code below is not supposed to
    // be able to panic, and hence the data won't leak but will be
    // enqueued into some deque for later execution.
    let abort_guard = unwind::AbortIfPanic; // just in case we are wrong, and code CAN panic
    let job_ref = spawn_job(func, registry);
    registry.inject_or_push(job_ref);
    mem::forget(abort_guard);
}

unsafe fn spawn_job<F>(func: F, registry: &Arc<Registry>) -> JobRef
where
    F: FnOnce() + Send + 'static,
{
    // Ensure that registry cannot terminate until this job has
    // executed. This ref is decremented at the (*) below.
    registry.increment_terminate_count();

    Box::new(HeapJob::new({
        let registry = registry.clone();
        move || {
            match unwind::halt_unwinding(func) {
                Ok(()) => {}
                Err(err) => {
                    registry.handle_panic(err);
                }
            }
            registry.terminate(); // (*) permit registry to terminate now
        }
    }))
    .as_job_ref()
}

/// Fires off a task into the Rayon threadpool in the "static" or
/// "global" scope.  Just like a standard thread, this task is not
/// tied to the current stack frame, and hence it cannot hold any
/// references other than those with `'static` lifetime. If you want
/// to spawn a task that references stack data, use [the `scope_fifo()`
/// function](fn.scope_fifo.html) to create a scope.
///
/// The behavior is essentially the same as [the `spawn`
/// function](fn.spawn.html), except that calls from the same thread
/// will be prioritized in FIFO order. This is similar to the now-
/// deprecated [`breadth_first`] option, except the effect is isolated
/// to relative `spawn_fifo` calls, not all threadpool tasks.
///
/// For more details on this design, see Rayon [RFC #1].
///
/// [`breadth_first`]: struct.ThreadPoolBuilder.html#method.breadth_first
/// [RFC #1]: https://github.com/rayon-rs/rfcs/blob/master/accepted/rfc0001-scope-scheduling.md
///
/// # Panic handling
///
/// If this closure should panic, the resulting panic will be
/// propagated to the panic handler registered in the `ThreadPoolBuilder`,
/// if any.  See [`ThreadPoolBuilder::panic_handler()`][ph] for more
/// details.
///
/// [ph]: struct.ThreadPoolBuilder.html#method.panic_handler
pub fn spawn_fifo<F>(func: F)
where
    F: FnOnce() + Send + 'static,
{
    // We assert that current registry has not terminated.
    unsafe { spawn_fifo_in(func, &Registry::current()) }
}

/// Spawns an asynchronous FIFO job in `registry.`
///
/// Unsafe because `registry` must not yet have terminated.
pub(super) unsafe fn spawn_fifo_in<F>(func: F, registry: &Arc<Registry>)
where
    F: FnOnce() + Send + 'static,
{
    // We assert that this does not hold any references (we know
    // this because of the `'static` bound in the inferface);
    // moreover, we assert that the code below is not supposed to
    // be able to panic, and hence the data won't leak but will be
    // enqueued into some deque for later execution.
    let abort_guard = unwind::AbortIfPanic; // just in case we are wrong, and code CAN panic
    let job_ref = spawn_job(func, registry);

    // If we're in the pool, use our thread's private fifo for this thread to execute
    // in a locally-FIFO order.  Otherwise, just use the pool's global injector.
    match registry.current_thread() {
        Some(worker) => worker.push_fifo(job_ref),
        None => registry.inject(&[job_ref]),
    }
    mem::forget(abort_guard);
}

#[cfg(test)]
mod test;