1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
// Bitcoin Hashes Library
// Written in 2018 by
//   Andrew Poelstra <apoelstra@wpsoftware.net>
//
// To the extent possible under law, the author(s) have dedicated all
// copyright and related and neighboring rights to this software to
// the public domain worldwide. This software is distributed without
// any warranty.
//
// You should have received a copy of the CC0 Public Domain Dedication
// along with this software.
// If not, see <http://creativecommons.org/publicdomain/zero/1.0/>.
//

//! # SHA1

use core::{cmp, str};

use HashEngine as EngineTrait;
use Hash as HashTrait;
use Error;
use util;

const BLOCK_SIZE: usize = 64;

/// Engine to compute SHA1 hash function
#[derive(Clone)]
pub struct HashEngine {
    buffer: [u8; BLOCK_SIZE],
    h: [u32; 5],
    length: usize,
}

impl Default for HashEngine {
    fn default() -> Self {
        HashEngine {
            h: [0x67452301, 0xefcdab89, 0x98badcfe, 0x10325476, 0xc3d2e1f0],
            length: 0,
            buffer: [0; BLOCK_SIZE],
        }
    }
}

impl EngineTrait for HashEngine {
    type MidState = [u8; 20];

    #[cfg(not(fuzzing))]
    fn midstate(&self) -> [u8; 20] {
        let mut ret = [0; 20];
        for (val, ret_bytes) in self.h.iter().zip(ret.chunks_mut(4)) {
            ret_bytes.copy_from_slice(&util::u32_to_array_be(*val));
        }
        ret
    }

    #[cfg(fuzzing)]
    fn midstate(&self) -> [u8; 20] {
        let mut ret = [0; 20];
        ret.copy_from_slice(&self.buffer[..20]);
        ret
    }

    const BLOCK_SIZE: usize = 64;

    fn n_bytes_hashed(&self) -> usize {
        self.length
    }

    engine_input_impl!();
}

/// Output of the SHA1 hash function
#[derive(Copy, Clone, PartialEq, Eq, Default, PartialOrd, Ord, Hash)]
#[cfg_attr(feature = "schemars", derive(schemars::JsonSchema))]
#[repr(transparent)]
pub struct Hash(
    #[cfg_attr(feature = "schemars", schemars(schema_with="util::json_hex_string::len_20"))]
    [u8; 20]
);

hex_fmt_impl!(Debug, Hash);
hex_fmt_impl!(Display, Hash);
hex_fmt_impl!(LowerHex, Hash);
index_impl!(Hash);
serde_impl!(Hash, 20);
borrow_slice_impl!(Hash);

impl str::FromStr for Hash {
    type Err = ::hex::Error;
    fn from_str(s: &str) -> Result<Self, Self::Err> {
        ::hex::FromHex::from_hex(s)
    }
}

impl HashTrait for Hash {
    type Engine = HashEngine;
    type Inner = [u8; 20];

    fn from_engine(mut e: HashEngine) -> Hash {
        // pad buffer with a single 1-bit then all 0s, until there are exactly 8 bytes remaining
        let data_len = e.length as u64;

        let zeroes = [0; BLOCK_SIZE - 8];
        e.input(&[0x80]);
        if e.length % BLOCK_SIZE > zeroes.len() {
            e.input(&zeroes);
        }
        let pad_length = zeroes.len() - (e.length % BLOCK_SIZE);
        e.input(&zeroes[..pad_length]);
        debug_assert_eq!(e.length % BLOCK_SIZE, zeroes.len());
        
        e.input(&util::u64_to_array_be(8 * data_len));
        debug_assert_eq!(e.length % BLOCK_SIZE, 0);

        Hash(e.midstate())
    }

    const LEN: usize = 20;

    fn from_slice(sl: &[u8]) -> Result<Hash, Error> {
        if sl.len() != 20 {
            Err(Error::InvalidLength(Self::LEN, sl.len()))
        } else {
            let mut ret = [0; 20];
            ret.copy_from_slice(sl);
            Ok(Hash(ret))
        }
    }

    fn into_inner(self) -> Self::Inner {
        self.0
    }

    fn as_inner(&self) -> &Self::Inner {
        &self.0
    }

    fn from_inner(inner: Self::Inner) -> Self {
        Hash(inner)
    }
}

impl HashEngine {
    // Basic unoptimized algorithm from Wikipedia
    fn process_block(&mut self) {
        debug_assert_eq!(self.buffer.len(), BLOCK_SIZE);

        let mut w = [0u32; 80];
        for (w_val, buff_bytes) in w.iter_mut().zip(self.buffer.chunks(4)) {
            *w_val = util::slice_to_u32_be(buff_bytes);
        }
        for i in 16..80 {
            w[i] = circular_lshift32!(1, w[i - 3] ^ w[i - 8] ^ w[i - 14] ^ w[i - 16]);
        }

        let mut a = self.h[0];
        let mut b = self.h[1];
        let mut c = self.h[2];
        let mut d = self.h[3];
        let mut e = self.h[4];

        for (i, &wi) in w.iter().enumerate() {
            let (f, k) = match i {
                 0...19 => ((b & c) | (!b & d), 0x5a827999),
                20...39 => (b ^ c ^ d, 0x6ed9eba1),
                40...59 => ((b & c) | (b & d) | (c & d), 0x8f1bbcdc),
                60...79 => (b ^ c ^ d, 0xca62c1d6),
                _ => unreachable!()
            };

            let new_a = circular_lshift32!(5, a).wrapping_add(f).wrapping_add(e).wrapping_add(k).wrapping_add(wi);
            e = d;
            d = c;
            c = circular_lshift32!(30, b);
            b = a;
            a = new_a;
        }

        self.h[0] = self.h[0].wrapping_add(a);
        self.h[1] = self.h[1].wrapping_add(b);
        self.h[2] = self.h[2].wrapping_add(c);
        self.h[3] = self.h[3].wrapping_add(d);
        self.h[4] = self.h[4].wrapping_add(e);
    }
}

#[cfg(test)]
mod tests {
    use sha1;
    use hex::{FromHex, ToHex};
    use Hash;
    use HashEngine;

    #[derive(Clone)]
    struct Test {
        input: &'static str,
        output: Vec<u8>,
        output_str: &'static str,
    }

    #[test]
    fn test() {
        let tests = vec![
            // Examples from wikipedia
            Test {
                input: "",
                output: vec![
                    0xda, 0x39, 0xa3, 0xee,
                    0x5e, 0x6b, 0x4b, 0x0d,
                    0x32, 0x55, 0xbf, 0xef,
                    0x95, 0x60, 0x18, 0x90,
                    0xaf, 0xd8, 0x07, 0x09,
                ],
                output_str: "da39a3ee5e6b4b0d3255bfef95601890afd80709"
            },
            Test {
                input: "The quick brown fox jumps over the lazy dog",
                output: vec![
                    0x2f, 0xd4, 0xe1, 0xc6,
                    0x7a, 0x2d, 0x28, 0xfc,
                    0xed, 0x84, 0x9e, 0xe1,
                    0xbb, 0x76, 0xe7, 0x39,
                    0x1b, 0x93, 0xeb, 0x12,
                ],
                output_str: "2fd4e1c67a2d28fced849ee1bb76e7391b93eb12",
            },
            Test {
                input: "The quick brown fox jumps over the lazy cog",
                output: vec![
                    0xde, 0x9f, 0x2c, 0x7f,
                    0xd2, 0x5e, 0x1b, 0x3a,
                    0xfa, 0xd3, 0xe8, 0x5a,
                    0x0b, 0xd1, 0x7d, 0x9b,
                    0x10, 0x0d, 0xb4, 0xb3,
                ],
                output_str: "de9f2c7fd25e1b3afad3e85a0bd17d9b100db4b3",
            },
        ];

        for test in tests {
            // Hash through high-level API, check hex encoding/decoding
            let hash = sha1::Hash::hash(&test.input.as_bytes());
            assert_eq!(hash, sha1::Hash::from_hex(test.output_str).expect("parse hex"));
            assert_eq!(&hash[..], &test.output[..]);
            assert_eq!(&hash.to_hex(), &test.output_str);

            // Hash through engine, checking that we can input byte by byte
            let mut engine = sha1::Hash::engine();
            for ch in test.input.as_bytes() {
                engine.input(&[*ch]);
            }
            let manual_hash = sha1::Hash::from_engine(engine);
            assert_eq!(hash, manual_hash);
            assert_eq!(hash.into_inner()[..].as_ref(), test.output.as_slice());
        }
    }

    #[cfg(feature="serde")]
    #[test]
    fn sha1_serde() {
        use serde_test::{Configure, Token, assert_tokens};

        static HASH_BYTES: [u8; 20] = [
            0x13, 0x20, 0x72, 0xdf,
            0x69, 0x09, 0x33, 0x83,
            0x5e, 0xb8, 0xb6, 0xad,
            0x0b, 0x77, 0xe7, 0xb6,
            0xf1, 0x4a, 0xca, 0xd7,
        ];

        let hash = sha1::Hash::from_slice(&HASH_BYTES).expect("right number of bytes");
        assert_tokens(&hash.compact(), &[Token::BorrowedBytes(&HASH_BYTES[..])]);
        assert_tokens(&hash.readable(), &[Token::Str("132072df690933835eb8b6ad0b77e7b6f14acad7")]);
    }
}

#[cfg(all(test, feature="unstable"))]
mod benches {
    use test::Bencher;

    use sha1;
    use Hash;
    use HashEngine;

    #[bench]
    pub fn sha1_10(bh: & mut Bencher) {
        let mut engine = sha1::Hash::engine();
        let bytes = [1u8; 10];
        bh.iter( || {
            engine.input(&bytes);
        });
        bh.bytes = bytes.len() as u64;
    }

    #[bench]
    pub fn sha1_1k(bh: & mut Bencher) {
        let mut engine = sha1::Hash::engine();
        let bytes = [1u8; 1024];
        bh.iter( || {
            engine.input(&bytes);
        });
        bh.bytes = bytes.len() as u64;
    }

    #[bench]
    pub fn sha1_64k(bh: & mut Bencher) {
        let mut engine = sha1::Hash::engine();
        let bytes = [1u8; 65536];
        bh.iter( || {
            engine.input(&bytes);
        });
        bh.bytes = bytes.len() as u64;
    }

}