1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
// Bitcoin Hashes Library
// Written in 2018 by
//   Andrew Poelstra <apoelstra@wpsoftware.net>
//
// To the extent possible under law, the author(s) have dedicated all
// copyright and related and neighboring rights to this software to
// the public domain worldwide. This software is distributed without
// any warranty.
//
// You should have received a copy of the CC0 Public Domain Dedication
// along with this software.
// If not, see <http://creativecommons.org/publicdomain/zero/1.0/>.
//

//! # Hex encoding and decoding
//!

#[cfg(any(feature = "std", feature = "alloc"))]
use alloc::{string::String, vec::Vec};
#[cfg(feature = "alloc")]
use alloc::format;

use core::{fmt, str};
use Hash;

/// Hex decoding error
#[derive(Debug, Copy, Clone, PartialEq, Eq, PartialOrd, Ord, Hash)]
pub enum Error {
    /// non-hexadecimal character
    InvalidChar(u8),
    /// purported hex string had odd length
    OddLengthString(usize),
    /// tried to parse fixed-length hash from a string with the wrong type (expected, got)
    InvalidLength(usize, usize),
}

impl fmt::Display for Error {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        match *self {
            Error::InvalidChar(ch) => write!(f, "invalid hex character {}", ch),
            Error::OddLengthString(ell) => write!(f, "odd hex string length {}", ell),
            Error::InvalidLength(ell, ell2) => write!(f, "bad hex string length {} (expected {})", ell2, ell),
        }
    }
}

/// Trait for objects that can be serialized as hex strings
#[cfg(any(test, feature = "std", feature = "alloc"))]
pub trait ToHex {
    /// Hex representation of the object
    fn to_hex(&self) -> String;
}

/// Trait for objects that can be deserialized from hex strings
pub trait FromHex: Sized {
    /// Produce an object from a byte iterator
    fn from_byte_iter<I>(iter: I) -> Result<Self, Error>
        where I: Iterator<Item=Result<u8, Error>> +
            ExactSizeIterator +
            DoubleEndedIterator;

    /// Produce an object from a hex string
    fn from_hex(s: &str) -> Result<Self, Error> {
        Self::from_byte_iter(HexIterator::new(s)?)
    }
}

#[cfg(any(test, feature = "std", feature = "alloc"))]
impl<T: fmt::LowerHex> ToHex for T {
    /// Outputs the hash in hexadecimal form
    fn to_hex(&self) -> String {
        format!("{:x}", self)
    }
}

impl<T: Hash> FromHex for T {
    fn from_byte_iter<I>(iter: I) -> Result<Self, Error>
        where I: Iterator<Item=Result<u8, Error>> +
            ExactSizeIterator +
            DoubleEndedIterator,
    {
        let inner;
        if Self::DISPLAY_BACKWARD {
            inner = T::Inner::from_byte_iter(iter.rev())?;
        } else {
            inner = T::Inner::from_byte_iter(iter)?;
        }
        Ok(Hash::from_inner(inner))
    }
}

/// Iterator over a hex-encoded string slice which decodes hex and yields bytes.
pub struct HexIterator<'a> {
    /// The `Bytes` iterator whose next two bytes will be decoded to yield
    /// the next byte.
    iter: str::Bytes<'a>,
}

impl<'a> HexIterator<'a> {
    /// Constructs a new `HexIterator` from a string slice. If the string is of
    /// odd length it returns an error.
    pub fn new(s: &'a str) -> Result<HexIterator<'a>, Error> {
        if s.len() % 2 != 0 {
            Err(Error::OddLengthString(s.len()))
        } else {
            Ok(HexIterator { iter: s.bytes() })
        }
    }
}

fn chars_to_hex(hi: u8, lo: u8) -> Result<u8, Error> {
    let hih = (hi as char)
        .to_digit(16)
        .ok_or(Error::InvalidChar(hi))?;
    let loh = (lo as char)
        .to_digit(16)
        .ok_or(Error::InvalidChar(lo))?;

    let ret = (hih << 4) + loh;
    Ok(ret as u8)
}

impl<'a> Iterator for HexIterator<'a> {
    type Item = Result<u8, Error>;

    fn next(&mut self) -> Option<Result<u8, Error>> {
        let hi = self.iter.next()?;
        let lo = self.iter.next().unwrap();
        Some(chars_to_hex(hi, lo))
    }

    fn size_hint(&self) -> (usize, Option<usize>) {
        let (min, max) = self.iter.size_hint();
        (min / 2, max.map(|x| x /2))
    }
}

impl<'a> DoubleEndedIterator for HexIterator<'a> {
    fn next_back(&mut self) -> Option<Result<u8, Error>> {
        let lo = self.iter.next_back()?;
        let hi = self.iter.next_back().unwrap();
        Some(chars_to_hex(hi, lo))
    }
}

impl<'a> ExactSizeIterator for HexIterator<'a> {}

/// Output hex into an object implementing `fmt::Write`, which is usually more
/// efficient than going through a `String` using `ToHex`.
pub fn format_hex(data: &[u8], f: &mut fmt::Formatter) -> fmt::Result {
    let prec = f.precision().unwrap_or(2 * data.len());
    let width = f.width().unwrap_or(2 * data.len());
    for _ in (2 * data.len())..width {
        f.write_str("0")?;
    }
    for ch in data.iter().take(prec / 2) {
        write!(f, "{:02x}", *ch)?;
    }
    if prec < 2 * data.len() && prec % 2 == 1 {
        write!(f, "{:x}", data[prec / 2] / 16)?;
    }
    Ok(())
}

/// Output hex in reverse order; used for Sha256dHash whose standard hex encoding
/// has the bytes reversed.
pub fn format_hex_reverse(data: &[u8], f: &mut fmt::Formatter) -> fmt::Result {
    let prec = f.precision().unwrap_or(2 * data.len());
    let width = f.width().unwrap_or(2 * data.len());
    for _ in (2 * data.len())..width {
        f.write_str("0")?;
    }
    for ch in data.iter().rev().take(prec / 2) {
        write!(f, "{:02x}", *ch)?;
    }
    if prec < 2 * data.len() && prec % 2 == 1 {
        write!(f, "{:x}", data[data.len() - 1 - prec / 2] / 16)?;
    }
    Ok(())
}

#[cfg(any(test, feature = "alloc", feature = "std"))]
impl ToHex for [u8] {
    fn to_hex(&self) -> String {
        use core::fmt::Write;
        let mut ret = String::with_capacity(2 * self.len());
        for ch in self {
            write!(ret, "{:02x}", ch).expect("writing to string");
        }
        ret
    }
}

#[cfg(any(test, feature = "std", feature = "alloc"))]
impl FromHex for Vec<u8> {
    fn from_byte_iter<I>(iter: I) -> Result<Self, Error>
        where I: Iterator<Item=Result<u8, Error>> +
            ExactSizeIterator +
            DoubleEndedIterator,
    {
        iter.collect()
    }
}

macro_rules! impl_fromhex_array {
    ($len:expr) => {
        impl FromHex for [u8; $len] {
            fn from_byte_iter<I>(iter: I) -> Result<Self, Error>
                where I: Iterator<Item=Result<u8, Error>> +
                    ExactSizeIterator +
                    DoubleEndedIterator,
            {
                if iter.len() == $len {
                    let mut ret = [0; $len];
                    for (n, byte) in iter.enumerate() {
                        ret[n] = byte?;
                    }
                    Ok(ret)
                } else {
                    Err(Error::InvalidLength(2 * $len, 2 * iter.len()))
                }
            }
        }
    }
}

impl_fromhex_array!(2);
impl_fromhex_array!(4);
impl_fromhex_array!(6);
impl_fromhex_array!(8);
impl_fromhex_array!(10);
impl_fromhex_array!(12);
impl_fromhex_array!(14);
impl_fromhex_array!(16);
impl_fromhex_array!(20);
impl_fromhex_array!(24);
impl_fromhex_array!(28);
impl_fromhex_array!(32);
impl_fromhex_array!(33);
impl_fromhex_array!(64);
impl_fromhex_array!(65);
impl_fromhex_array!(128);
impl_fromhex_array!(256);
impl_fromhex_array!(384);
impl_fromhex_array!(512);

#[cfg(test)]
mod tests {
    use super::*;

    use core::fmt;

    #[test]
    fn hex_roundtrip() {
        let expected = "0123456789abcdef";
        let expected_up = "0123456789ABCDEF";

        let parse: Vec<u8> = FromHex::from_hex(expected).expect("parse lowercase string");
        assert_eq!(parse, vec![0x01, 0x23, 0x45, 0x67, 0x89, 0xab, 0xcd, 0xef]);
        let ser = parse.to_hex();
        assert_eq!(ser, expected);

        let parse: Vec<u8> = FromHex::from_hex(expected_up).expect("parse uppercase string");
        assert_eq!(parse, vec![0x01, 0x23, 0x45, 0x67, 0x89, 0xab, 0xcd, 0xef]);
        let ser = parse.to_hex();
        assert_eq!(ser, expected);

        let parse: [u8; 8] = FromHex::from_hex(expected_up).expect("parse uppercase string");
        assert_eq!(parse, [0x01, 0x23, 0x45, 0x67, 0x89, 0xab, 0xcd, 0xef]);
        let ser = parse.to_hex();
        assert_eq!(ser, expected);
    }

    #[test]
    fn hex_truncate() {
        struct HexBytes(Vec<u8>);
        impl fmt::LowerHex for HexBytes {
            fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
                format_hex(&self.0, f)
            }
        }

        let bytes = HexBytes(vec![1u8, 2, 3, 4, 5, 6, 7, 8, 9, 10]);

        assert_eq!(
            format!("{:x}", bytes),
            "0102030405060708090a"
        );

        for i in 0..20 {
            assert_eq!(
                format!("{:.prec$x}", bytes, prec = i),
                &"0102030405060708090a"[0..i]
            );
        }

        assert_eq!(
            format!("{:25x}", bytes),
            "000000102030405060708090a"
        );
        assert_eq!(
            format!("{:26x}", bytes),
            "0000000102030405060708090a"
        );
    }

    #[test]
    fn hex_truncate_rev() {
        struct HexBytes(Vec<u8>);
        impl fmt::LowerHex for HexBytes {
            fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
                format_hex_reverse(&self.0, f)
            }
        }

        let bytes = HexBytes(vec![1u8, 2, 3, 4, 5, 6, 7, 8, 9, 10]);

        assert_eq!(
            format!("{:x}", bytes),
            "0a090807060504030201"
        );

        for i in 0..20 {
            assert_eq!(
                format!("{:.prec$x}", bytes, prec = i),
                &"0a090807060504030201"[0..i]
            );
        }

        assert_eq!(
            format!("{:25x}", bytes),
            "000000a090807060504030201"
        );
        assert_eq!(
            format!("{:26x}", bytes),
            "0000000a090807060504030201"
        );
    }

    #[test]
    fn hex_error() {
        let oddlen = "0123456789abcdef0";
        let badchar1 = "Z123456789abcdef";
        let badchar2 = "012Y456789abcdeb";
        let badchar3 = "«23456789abcdef";

        assert_eq!(
            Vec::<u8>::from_hex(oddlen),
            Err(Error::OddLengthString(17))
        );
        assert_eq!(
            <[u8; 4]>::from_hex(oddlen),
            Err(Error::OddLengthString(17))
        );
        assert_eq!(
            <[u8; 8]>::from_hex(oddlen),
            Err(Error::OddLengthString(17))
        );
        assert_eq!(
            Vec::<u8>::from_hex(badchar1),
            Err(Error::InvalidChar(b'Z'))
        );
        assert_eq!(
            Vec::<u8>::from_hex(badchar2),
            Err(Error::InvalidChar(b'Y'))
        );
        assert_eq!(
            Vec::<u8>::from_hex(badchar3),
            Err(Error::InvalidChar(194))
        );
    }
}