1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
// Rust Bitcoin Library
// Written in 2014 by
//     Andrew Poelstra <apoelstra@wpsoftware.net>
//
// To the extent possible under law, the author(s) have dedicated all
// copyright and related and neighboring rights to this software to
// the public domain worldwide. This software is distributed without
// any warranty.
//
// You should have received a copy of the CC0 Public Domain Dedication
// along with this software.
// If not, see <http://creativecommons.org/publicdomain/zero/1.0/>.
//

//! Miscellaneous functions
//!
//! Various utility functions

use hashes::{sha256d, Hash, HashEngine};

use blockdata::opcodes;
use consensus::{encode, Encodable};

#[cfg(feature = "secp-recovery")]
pub use self::message_signing::{MessageSignature, MessageSignatureError};

/// The prefix for signed messages using Bitcoin's message signing protocol.
pub const BITCOIN_SIGNED_MSG_PREFIX: &[u8] = b"\x18Bitcoin Signed Message:\n";

#[cfg(feature = "secp-recovery")]
mod message_signing {
    use std::{error, fmt};

    use hashes::sha256d;
    use secp256k1;
    use secp256k1::recovery::{RecoveryId, RecoverableSignature};

    use util::ecdsa::PublicKey;
    use util::address::{Address, AddressType};

    /// An error used for dealing with Bitcoin Signed Messages.
    #[derive(Debug, PartialEq, Eq)]
    pub enum MessageSignatureError {
        /// Signature is expected to be 65 bytes.
        InvalidLength,
        /// The signature is invalidly constructed.
        InvalidEncoding(secp256k1::Error),
        /// Invalid base64 encoding.
        InvalidBase64,
    }

    impl fmt::Display for MessageSignatureError {
        fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
            match *self {
                MessageSignatureError::InvalidLength => write!(f, "length not 65 bytes"),
                MessageSignatureError::InvalidEncoding(ref e) => write!(f, "invalid encoding: {}", e),
                MessageSignatureError::InvalidBase64 => write!(f, "invalid base64"),
            }
        }
    }

    impl error::Error for MessageSignatureError {
        fn cause(&self) -> Option<&dyn error::Error> {
            match *self {
                MessageSignatureError::InvalidEncoding(ref e) => Some(e),
                _ => None,
            }
        }
    }

    #[doc(hidden)]
    impl From<secp256k1::Error> for MessageSignatureError {
        fn from(e: secp256k1::Error) -> MessageSignatureError {
            MessageSignatureError::InvalidEncoding(e)
        }
    }

    /// A signature on a Bitcoin Signed Message.
    ///
    /// In order to use the `to_base64` and `from_base64` methods, as well as the
    /// `fmt::Display` and `str::FromStr` implementations, the `base64` feature
    /// must be enabled.
    #[derive(Copy, Clone, PartialEq, Eq, Debug)]
    pub struct MessageSignature {
        /// The inner recoverable signature.
        pub signature: RecoverableSignature,
        /// Whether or not this signature was created with a compressed key.
        pub compressed: bool,
    }

    impl MessageSignature {
        /// Create a new [MessageSignature].
        pub fn new(signature: RecoverableSignature, compressed: bool) -> MessageSignature {
            MessageSignature {
                signature: signature,
                compressed: compressed,
            }
        }

        /// Serialize to bytes.
        pub fn serialize(&self) -> [u8; 65] {
            let (recid, raw) = self.signature.serialize_compact();
            let mut serialized = [0u8; 65];
            serialized[0] = 27;
            serialized[0] += recid.to_i32() as u8;
            if self.compressed {
                serialized[0] += 4;
            }
            serialized[1..].copy_from_slice(&raw[..]);
            serialized
        }

        /// Create from a byte slice.
        pub fn from_slice(bytes: &[u8]) -> Result<MessageSignature, MessageSignatureError> {
            if bytes.len() != 65 {
                return Err(MessageSignatureError::InvalidLength);
            }
            // We just check this here so we can safely subtract further.
            if bytes[0] < 27 {
                return Err(MessageSignatureError::InvalidEncoding(secp256k1::Error::InvalidRecoveryId));
            };
            let recid = RecoveryId::from_i32(((bytes[0] - 27) & 0x03) as i32)?;
            Ok(MessageSignature {
                signature: RecoverableSignature::from_compact(&bytes[1..], recid)?,
                compressed: ((bytes[0] - 27) & 0x04) != 0,
            })
        }

        /// Attempt to recover a public key from the signature and the signed message.
        ///
        /// To get the message hash from a message, use [super::signed_msg_hash].
        pub fn recover_pubkey<C: secp256k1::Verification>(
            &self,
            secp_ctx: &secp256k1::Secp256k1<C>,
            msg_hash: sha256d::Hash
        ) -> Result<PublicKey, secp256k1::Error> {
            let msg = secp256k1::Message::from_slice(&msg_hash[..])?;
            let pubkey = secp_ctx.recover(&msg, &self.signature)?;
            Ok(PublicKey {
                key: pubkey,
                compressed: self.compressed,
            })
        }

        /// Verify that the signature signs the message and was signed by the given address.
        ///
        /// To get the message hash from a message, use [super::signed_msg_hash].
        pub fn is_signed_by_address<C: secp256k1::Verification>(
            &self,
            secp_ctx: &secp256k1::Secp256k1<C>,
            address: &Address,
            msg_hash: sha256d::Hash
        ) -> Result<bool, secp256k1::Error> {
            let pubkey = self.recover_pubkey(&secp_ctx, msg_hash)?;
            Ok(match address.address_type() {
                Some(AddressType::P2pkh) => {
                    *address == Address::p2pkh(&pubkey, address.network)
                }
                Some(AddressType::P2sh) => false,
                Some(AddressType::P2wpkh) => false,
                Some(AddressType::P2wsh) => false,
                None => false,
            })
        }

        #[cfg(feature = "base64")]
        /// Convert a signature from base64 encoding.
        pub fn from_base64(s: &str) -> Result<MessageSignature, MessageSignatureError> {
            let bytes = ::base64::decode(s).map_err(|_| MessageSignatureError::InvalidBase64)?;
            MessageSignature::from_slice(&bytes)
        }

        #[cfg(feature = "base64")]
        /// Convert to base64 encoding.
        pub fn to_base64(&self) -> String {
            ::base64::encode(&self.serialize()[..])
        }
    }

    #[cfg(feature = "base64")]
    impl fmt::Display for MessageSignature {
        fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
            let bytes = self.serialize();
            // This avoids the allocation of a String.
            write!(f, "{}", ::base64::display::Base64Display::with_config(
                    &bytes[..], ::base64::STANDARD))
        }
    }

    #[cfg(feature = "base64")]
    impl ::std::str::FromStr for MessageSignature {
        type Err = MessageSignatureError;
        fn from_str(s: &str) -> Result<MessageSignature, MessageSignatureError> {
            MessageSignature::from_base64(s)
        }
    }
}

/// Search for `needle` in the vector `haystack` and remove every
/// instance of it, returning the number of instances removed.
/// Loops through the vector opcode by opcode, skipping pushed data.
pub fn script_find_and_remove(haystack: &mut Vec<u8>, needle: &[u8]) -> usize {
    if needle.len() > haystack.len() { return 0; }
    if needle.is_empty() { return 0; }

    let mut top = haystack.len() - needle.len();
    let mut n_deleted = 0;

    let mut i = 0;
    while i <= top {
        if &haystack[i..(i + needle.len())] == needle {
            for j in i..top {
                haystack.swap(j + needle.len(), j);
            }
            n_deleted += 1;
            // This is ugly but prevents infinite loop in case of overflow
            let overflow = top < needle.len();
            top = top.wrapping_sub(needle.len());
            if overflow { break; }
        } else {
            i += match opcodes::All::from((*haystack)[i]).classify() {
                opcodes::Class::PushBytes(n) => n as usize + 1,
                opcodes::Class::Ordinary(opcodes::Ordinary::OP_PUSHDATA1) => 2,
                opcodes::Class::Ordinary(opcodes::Ordinary::OP_PUSHDATA2) => 3,
                opcodes::Class::Ordinary(opcodes::Ordinary::OP_PUSHDATA4) => 5,
                _ => 1
            };
        }
    }
    haystack.truncate(top.wrapping_add(needle.len()));
    n_deleted
}

/// Hash message for signature using Bitcoin's message signing format.
pub fn signed_msg_hash(msg: &str) -> sha256d::Hash {
    let mut engine = sha256d::Hash::engine();
    engine.input(BITCOIN_SIGNED_MSG_PREFIX);
    let msg_len = encode::VarInt(msg.len() as u64);
    msg_len.consensus_encode(&mut engine).unwrap();
    engine.input(msg.as_bytes());
    sha256d::Hash::from_engine(engine)
}

#[cfg(test)]
mod tests {
    use hashes::hex::ToHex;
    use super::script_find_and_remove;
    use super::signed_msg_hash;

    #[test]
    fn test_script_find_and_remove() {
        let mut v = vec![101u8, 102, 103, 104, 102, 103, 104, 102, 103, 104, 105, 106, 107, 108, 109];

        assert_eq!(script_find_and_remove(&mut v, &[]), 0);
        assert_eq!(script_find_and_remove(&mut v, &[105, 105, 105]), 0);
        assert_eq!(v, vec![101, 102, 103, 104, 102, 103, 104, 102, 103, 104, 105, 106, 107, 108, 109]);

        assert_eq!(script_find_and_remove(&mut v, &[105, 106, 107]), 1);
        assert_eq!(v, vec![101, 102, 103, 104, 102, 103, 104, 102, 103, 104, 108, 109]);

        assert_eq!(script_find_and_remove(&mut v, &[104, 108, 109]), 1);
        assert_eq!(v, vec![101, 102, 103, 104, 102, 103, 104, 102, 103]);

        assert_eq!(script_find_and_remove(&mut v, &[101]), 1);
        assert_eq!(v, vec![102, 103, 104, 102, 103, 104, 102, 103]);

        assert_eq!(script_find_and_remove(&mut v, &[102]), 3);
        assert_eq!(v, vec![103, 104, 103, 104, 103]);

        assert_eq!(script_find_and_remove(&mut v, &[103, 104]), 2);
        assert_eq!(v, vec![103]);

        assert_eq!(script_find_and_remove(&mut v, &[105, 105, 5]), 0);
        assert_eq!(script_find_and_remove(&mut v, &[105]), 0);
        assert_eq!(script_find_and_remove(&mut v, &[103]), 1);
        assert_eq!(v, Vec::<u8>::new());

        assert_eq!(script_find_and_remove(&mut v, &[105, 105, 5]), 0);
        assert_eq!(script_find_and_remove(&mut v, &[105]), 0);
    }

    #[test]
    fn test_script_codesep_remove() {
        let mut s = vec![33u8, 3, 132, 121, 160, 250, 153, 140, 211, 82, 89, 162, 239, 10, 122, 92, 104, 102, 44, 20, 116, 248, 140, 203, 109, 8, 167, 103, 123, 190, 199, 242, 32, 65, 173, 171, 33, 3, 132, 121, 160, 250, 153, 140, 211, 82, 89, 162, 239, 10, 122, 92, 104, 102, 44, 20, 116, 248, 140, 203, 109, 8, 167, 103, 123, 190, 199, 242, 32, 65, 173, 171, 81];
        assert_eq!(script_find_and_remove(&mut s, &[171]), 2);
        assert_eq!(s, vec![33, 3, 132, 121, 160, 250, 153, 140, 211, 82, 89, 162, 239, 10, 122, 92, 104, 102, 44, 20, 116, 248, 140, 203, 109, 8, 167, 103, 123, 190, 199, 242, 32, 65, 173, 33, 3, 132, 121, 160, 250, 153, 140, 211, 82, 89, 162, 239, 10, 122, 92, 104, 102, 44, 20, 116, 248, 140, 203, 109, 8, 167, 103, 123, 190, 199, 242, 32, 65, 173, 81]);
    }

    #[test]
    fn test_signed_msg_hash() {
        let hash = signed_msg_hash("test");
        assert_eq!(hash.to_hex(), "a6f87fe6d58a032c320ff8d1541656f0282c2c7bfcc69d61af4c8e8ed528e49c");
    }

    #[test]
    #[cfg(all(feature = "secp-recovery", feature = "base64"))]
    fn test_message_signature() {
        use std::str::FromStr;
        use secp256k1;

        let secp = secp256k1::Secp256k1::new();
        let message = "rust-bitcoin MessageSignature test";
        let msg_hash = super::signed_msg_hash(&message);
        let msg = secp256k1::Message::from_slice(&msg_hash).unwrap();

        let privkey = secp256k1::SecretKey::new(&mut secp256k1::rand::thread_rng());
        let secp_sig = secp.sign_recoverable(&msg, &privkey);
        let signature = super::MessageSignature {
            signature: secp_sig,
            compressed: true,
        };

        assert_eq!(signature.to_base64(), signature.to_string());
        let signature2 = super::MessageSignature::from_str(&signature.to_string()).unwrap();
        let pubkey = signature2.recover_pubkey(&secp, msg_hash).unwrap();
        assert_eq!(pubkey.compressed, true);
        assert_eq!(pubkey.key, secp256k1::PublicKey::from_secret_key(&secp, &privkey));

        let p2pkh = ::Address::p2pkh(&pubkey, ::Network::Bitcoin);
        assert_eq!(signature2.is_signed_by_address(&secp, &p2pkh, msg_hash), Ok(true));
        let p2wpkh = ::Address::p2wpkh(&pubkey, ::Network::Bitcoin).unwrap();
        assert_eq!(signature2.is_signed_by_address(&secp, &p2wpkh, msg_hash), Ok(false));
        let p2shwpkh = ::Address::p2shwpkh(&pubkey, ::Network::Bitcoin).unwrap();
        assert_eq!(signature2.is_signed_by_address(&secp, &p2shwpkh, msg_hash), Ok(false));
    }
}