1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
// Rust Bitcoin Library
// Written in 2014 by
//     Andrew Poelstra <apoelstra@wpsoftware.net>
// To the extent possible under law, the author(s) have dedicated all
// copyright and related and neighboring rights to this software to
// the public domain worldwide. This software is distributed without
// any warranty.
//
// You should have received a copy of the CC0 Public Domain Dedication
// along with this software.
// If not, see <http://creativecommons.org/publicdomain/zero/1.0/>.
//

//! ECDSA Bitcoin Keys
//!
//! ECDSA keys used in Bitcoin that can be roundtrip (de)serialized.
//!

use std::fmt::{self, Write};
use std::{io, ops};
use std::str::FromStr;

use secp256k1::{self, Secp256k1};
use network::constants::Network;
use hashes::{Hash, hash160};
use hash_types::{PubkeyHash, WPubkeyHash};
use util::base58;
use util::key::Error;

/// A Bitcoin ECDSA public key
#[derive(Debug, Copy, Clone, PartialEq, Eq, PartialOrd, Ord, Hash)]
pub struct PublicKey {
    /// Whether this public key should be serialized as compressed
    pub compressed: bool,
    /// The actual ECDSA key
    pub key: secp256k1::PublicKey,
}

impl PublicKey {
    /// Constructs compressed ECDSA public key from the provided generic Secp256k1 public key
    pub fn new(key: secp256k1::PublicKey) -> PublicKey {
        PublicKey {
            compressed: true,
            key: key,
        }
    }

    /// Constructs uncompressed (legacy) ECDSA public key from the provided generic Secp256k1
    /// public key
    pub fn new_uncompressed(key: secp256k1::PublicKey) -> PublicKey {
        PublicKey {
            compressed: false,
            key: key,
        }
    }

    /// Returns bitcoin 160-bit hash of the public key
    pub fn pubkey_hash(&self) -> PubkeyHash {
        if self.compressed {
            PubkeyHash::hash(&self.key.serialize())
        } else {
            PubkeyHash::hash(&self.key.serialize_uncompressed())
        }
    }

    /// Returns bitcoin 160-bit hash of the public key for witness program
    pub fn wpubkey_hash(&self) -> Option<WPubkeyHash> {
        if self.compressed {
            Some(WPubkeyHash::from_inner(
                hash160::Hash::hash(&self.key.serialize()).into_inner()
            ))
        } else {
            // We can't create witness pubkey hashes for an uncompressed
            // public keys
            None
        }
    }

    /// Write the public key into a writer
    pub fn write_into<W: io::Write>(&self, mut writer: W) -> Result<(), io::Error> {
        if self.compressed {
            writer.write_all(&self.key.serialize())
        } else {
            writer.write_all(&self.key.serialize_uncompressed())
        }
    }

    /// Read the public key from a reader
    ///
    /// This internally reads the first byte before reading the rest, so
    /// use of a `BufReader` is recommended.
    pub fn read_from<R: io::Read>(mut reader: R) -> Result<Self, io::Error> {
        let mut bytes = [0; 65];

        reader.read_exact(&mut bytes[0..1])?;
        let bytes = if bytes[0] < 4 {
            &mut bytes[..33]
        } else {
            &mut bytes[..65]
        };

        reader.read_exact(&mut bytes[1..])?;
        Self::from_slice(bytes).map_err(|e| io::Error::new(io::ErrorKind::InvalidData, e))
    }

    /// Serialize the public key to bytes
    pub fn to_bytes(&self) -> Vec<u8> {
        let mut buf = Vec::new();
        self.write_into(&mut buf).expect("vecs don't error");
        buf
    }

    /// Deserialize a public key from a slice
    pub fn from_slice(data: &[u8]) -> Result<PublicKey, Error> {
        let compressed: bool = match data.len() {
            33 => true,
            65 => false,
            len =>  { return Err(base58::Error::InvalidLength(len).into()); },
        };

        Ok(PublicKey {
            compressed: compressed,
            key: secp256k1::PublicKey::from_slice(data)?,
        })
    }

    /// Computes the public key as supposed to be used with this secret
    pub fn from_private_key<C: secp256k1::Signing>(secp: &Secp256k1<C>, sk: &PrivateKey) -> PublicKey {
        sk.public_key(secp)
    }
}

impl fmt::Display for PublicKey {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        if self.compressed {
            for ch in &self.key.serialize()[..] {
                write!(f, "{:02x}", ch)?;
            }
        } else {
            for ch in &self.key.serialize_uncompressed()[..] {
                write!(f, "{:02x}", ch)?;
            }
        }
        Ok(())
    }
}

impl FromStr for PublicKey {
    type Err = Error;
    fn from_str(s: &str) -> Result<PublicKey, Error> {
        let key = secp256k1::PublicKey::from_str(s)?;
        Ok(PublicKey {
            key: key,
            compressed: s.len() == 66
        })
    }
}

#[derive(Copy, Clone, PartialEq, Eq)]
/// A Bitcoin ECDSA private key
pub struct PrivateKey {
    /// Whether this private key should be serialized as compressed
    pub compressed: bool,
    /// The network on which this key should be used
    pub network: Network,
    /// The actual ECDSA key
    pub key: secp256k1::SecretKey,
}

impl PrivateKey {
    /// Constructs compressed ECDSA private key from the provided generic Secp256k1 private key
    /// and the specified network
    pub fn new(key: secp256k1::SecretKey, network: Network) -> PrivateKey {
        PrivateKey {
            compressed: true,
            network: network,
            key: key,
        }
    }

    /// Constructs uncompressed (legacy) ECDSA private key from the provided generic Secp256k1
    /// private key and the specified network
    pub fn new_uncompressed(key: secp256k1::SecretKey, network: Network) -> PrivateKey {
        PrivateKey {
            compressed: false,
            network: network,
            key: key,
        }
    }

    /// Creates a public key from this private key
    pub fn public_key<C: secp256k1::Signing>(&self, secp: &Secp256k1<C>) -> PublicKey {
        PublicKey {
            compressed: self.compressed,
            key: secp256k1::PublicKey::from_secret_key(secp, &self.key)
        }
    }

    /// Serialize the private key to bytes
    pub fn to_bytes(&self) -> Vec<u8> {
        self.key[..].to_vec()
    }

    /// Deserialize a private key from a slice
    pub fn from_slice(data: &[u8], network: Network) -> Result<PrivateKey, Error> {
        Ok(PrivateKey::new(
            secp256k1::SecretKey::from_slice(data)?,
            network,
        ))
    }

    /// Format the private key to WIF format.
    pub fn fmt_wif(&self, fmt: &mut dyn fmt::Write) -> fmt::Result {
        let mut ret = [0; 34];
        ret[0] = match self.network {
            Network::Bitcoin => 128,
            Network::Testnet | Network::Signet | Network::Regtest => 239,
        };
        ret[1..33].copy_from_slice(&self.key[..]);
        let privkey = if self.compressed {
            ret[33] = 1;
            base58::check_encode_slice(&ret[..])
        } else {
            base58::check_encode_slice(&ret[..33])
        };
        fmt.write_str(&privkey)
    }

    /// Get WIF encoding of this private key.
    pub fn to_wif(&self) -> String {
        let mut buf = String::new();
        buf.write_fmt(format_args!("{}", self)).unwrap();
        buf.shrink_to_fit();
        buf
    }

    /// Parse WIF encoded private key.
    pub fn from_wif(wif: &str) -> Result<PrivateKey, Error> {
        let data = base58::from_check(wif)?;

        let compressed = match data.len() {
            33 => false,
            34 => true,
            _ => { return Err(Error::Base58(base58::Error::InvalidLength(data.len()))); }
        };

        let network = match data[0] {
            128 => Network::Bitcoin,
            239 => Network::Testnet,
            x   => { return Err(Error::Base58(base58::Error::InvalidVersion(vec![x]))); }
        };

        Ok(PrivateKey {
            compressed: compressed,
            network: network,
            key: secp256k1::SecretKey::from_slice(&data[1..33])?,
        })
    }
}

impl fmt::Display for PrivateKey {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        self.fmt_wif(f)
    }
}

impl fmt::Debug for PrivateKey {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        write!(f, "[private key data]")
    }
}

impl FromStr for PrivateKey {
    type Err = Error;
    fn from_str(s: &str) -> Result<PrivateKey, Error> {
        PrivateKey::from_wif(s)
    }
}

impl ops::Index<ops::RangeFull> for PrivateKey {
    type Output = [u8];
    fn index(&self, _: ops::RangeFull) -> &[u8] {
        &self.key[..]
    }
}

#[cfg(feature = "serde")]
impl ::serde::Serialize for PrivateKey {
    fn serialize<S: ::serde::Serializer>(&self, s: S) -> Result<S::Ok, S::Error> {
        s.collect_str(self)
    }
}

#[cfg(feature = "serde")]
impl<'de> ::serde::Deserialize<'de> for PrivateKey {
    fn deserialize<D: ::serde::Deserializer<'de>>(d: D) -> Result<PrivateKey, D::Error> {
        struct WifVisitor;

        impl<'de> ::serde::de::Visitor<'de> for WifVisitor {
            type Value = PrivateKey;

            fn expecting(&self, formatter: &mut ::std::fmt::Formatter) -> ::std::fmt::Result {
                formatter.write_str("an ASCII WIF string")
            }

            fn visit_bytes<E>(self, v: &[u8]) -> Result<Self::Value, E>
            where
                E: ::serde::de::Error,
            {
                if let Ok(s) = ::std::str::from_utf8(v) {
                    PrivateKey::from_str(s).map_err(E::custom)
                } else {
                    Err(E::invalid_value(::serde::de::Unexpected::Bytes(v), &self))
                }
            }

            fn visit_str<E>(self, v: &str) -> Result<Self::Value, E>
            where
                E: ::serde::de::Error,
            {
                PrivateKey::from_str(v).map_err(E::custom)
            }
        }

        d.deserialize_str(WifVisitor)
    }
}

#[cfg(feature = "serde")]
impl ::serde::Serialize for PublicKey {
    fn serialize<S: ::serde::Serializer>(&self, s: S) -> Result<S::Ok, S::Error> {
        if s.is_human_readable() {
            s.collect_str(self)
        } else {
            if self.compressed {
                s.serialize_bytes(&self.key.serialize()[..])
            } else {
                s.serialize_bytes(&self.key.serialize_uncompressed()[..])
            }
        }
    }
}

#[cfg(feature = "serde")]
impl<'de> ::serde::Deserialize<'de> for PublicKey {
    fn deserialize<D: ::serde::Deserializer<'de>>(d: D) -> Result<PublicKey, D::Error> {
        if d.is_human_readable() {
            struct HexVisitor;

            impl<'de> ::serde::de::Visitor<'de> for HexVisitor {
                type Value = PublicKey;

                fn expecting(&self, formatter: &mut ::std::fmt::Formatter) -> ::std::fmt::Result {
                    formatter.write_str("an ASCII hex string")
                }

                fn visit_bytes<E>(self, v: &[u8]) -> Result<Self::Value, E>
                where
                    E: ::serde::de::Error,
                {
                    if let Ok(hex) = ::std::str::from_utf8(v) {
                        PublicKey::from_str(hex).map_err(E::custom)
                    } else {
                        Err(E::invalid_value(::serde::de::Unexpected::Bytes(v), &self))
                    }
                }

                fn visit_str<E>(self, v: &str) -> Result<Self::Value, E>
                where
                    E: ::serde::de::Error,
                {
                    PublicKey::from_str(v).map_err(E::custom)
                }
            }
            d.deserialize_str(HexVisitor)
        } else {
            struct BytesVisitor;

            impl<'de> ::serde::de::Visitor<'de> for BytesVisitor {
                type Value = PublicKey;

                fn expecting(&self, formatter: &mut ::std::fmt::Formatter) -> ::std::fmt::Result {
                    formatter.write_str("a bytestring")
                }

                fn visit_bytes<E>(self, v: &[u8]) -> Result<Self::Value, E>
                where
                    E: ::serde::de::Error,
                {
                    PublicKey::from_slice(v).map_err(E::custom)
                }
            }

            d.deserialize_bytes(BytesVisitor)
        }
    }
}

#[cfg(test)]
mod tests {
    use super::{PrivateKey, PublicKey};
    use secp256k1::Secp256k1;
    use std::io;
    use std::str::FromStr;
    use hashes::hex::ToHex;
    use network::constants::Network::Testnet;
    use network::constants::Network::Bitcoin;
    use util::address::Address;

    #[test]
    fn test_key_derivation() {
        // testnet compressed
        let sk = PrivateKey::from_wif("cVt4o7BGAig1UXywgGSmARhxMdzP5qvQsxKkSsc1XEkw3tDTQFpy").unwrap();
        assert_eq!(sk.network, Testnet);
        assert_eq!(sk.compressed, true);
        assert_eq!(&sk.to_wif(), "cVt4o7BGAig1UXywgGSmARhxMdzP5qvQsxKkSsc1XEkw3tDTQFpy");

        let secp = Secp256k1::new();
        let pk = Address::p2pkh(&sk.public_key(&secp), sk.network);
        assert_eq!(&pk.to_string(), "mqwpxxvfv3QbM8PU8uBx2jaNt9btQqvQNx");

        // test string conversion
        assert_eq!(&sk.to_string(), "cVt4o7BGAig1UXywgGSmARhxMdzP5qvQsxKkSsc1XEkw3tDTQFpy");
        let sk_str =
            PrivateKey::from_str("cVt4o7BGAig1UXywgGSmARhxMdzP5qvQsxKkSsc1XEkw3tDTQFpy").unwrap();
        assert_eq!(&sk.to_wif(), &sk_str.to_wif());

        // mainnet uncompressed
        let sk = PrivateKey::from_wif("5JYkZjmN7PVMjJUfJWfRFwtuXTGB439XV6faajeHPAM9Z2PT2R3").unwrap();
        assert_eq!(sk.network, Bitcoin);
        assert_eq!(sk.compressed, false);
        assert_eq!(&sk.to_wif(), "5JYkZjmN7PVMjJUfJWfRFwtuXTGB439XV6faajeHPAM9Z2PT2R3");

        let secp = Secp256k1::new();
        let mut pk = sk.public_key(&secp);
        assert_eq!(pk.compressed, false);
        assert_eq!(&pk.to_string(), "042e58afe51f9ed8ad3cc7897f634d881fdbe49a81564629ded8156bebd2ffd1af191923a2964c177f5b5923ae500fca49e99492d534aa3759d6b25a8bc971b133");
        assert_eq!(pk, PublicKey::from_str("042e58afe51f9ed8ad3cc7897f634d881fdbe49a81564629ded8156bebd2ffd1af191923a2964c177f5b5923ae500fca49e99492d534aa3759d6b25a8bc971b133").unwrap());
        let addr = Address::p2pkh(&pk, sk.network);
        assert_eq!(&addr.to_string(), "1GhQvF6dL8xa6wBxLnWmHcQsurx9RxiMc8");
        pk.compressed = true;
        assert_eq!(&pk.to_string(), "032e58afe51f9ed8ad3cc7897f634d881fdbe49a81564629ded8156bebd2ffd1af");
        assert_eq!(pk, PublicKey::from_str("032e58afe51f9ed8ad3cc7897f634d881fdbe49a81564629ded8156bebd2ffd1af").unwrap());
    }

    #[test]
    fn test_pubkey_hash() {
        let pk = PublicKey::from_str("032e58afe51f9ed8ad3cc7897f634d881fdbe49a81564629ded8156bebd2ffd1af").unwrap();
        let upk = PublicKey::from_str("042e58afe51f9ed8ad3cc7897f634d881fdbe49a81564629ded8156bebd2ffd1af191923a2964c177f5b5923ae500fca49e99492d534aa3759d6b25a8bc971b133").unwrap();
        assert_eq!(pk.pubkey_hash().to_hex(), "9511aa27ef39bbfa4e4f3dd15f4d66ea57f475b4");
        assert_eq!(upk.pubkey_hash().to_hex(), "ac2e7daf42d2c97418fd9f78af2de552bb9c6a7a");
    }

    #[test]
    fn test_wpubkey_hash() {
        let pk = PublicKey::from_str("032e58afe51f9ed8ad3cc7897f634d881fdbe49a81564629ded8156bebd2ffd1af").unwrap();
        let upk = PublicKey::from_str("042e58afe51f9ed8ad3cc7897f634d881fdbe49a81564629ded8156bebd2ffd1af191923a2964c177f5b5923ae500fca49e99492d534aa3759d6b25a8bc971b133").unwrap();
        assert_eq!(pk.wpubkey_hash().unwrap().to_hex(), "9511aa27ef39bbfa4e4f3dd15f4d66ea57f475b4");
        assert_eq!(upk.wpubkey_hash(), None);
    }

    #[cfg(feature = "serde")]
    #[test]
    fn test_key_serde() {
        use serde_test::{Configure, Token, assert_tokens};

        static KEY_WIF: &'static str = "cVt4o7BGAig1UXywgGSmARhxMdzP5qvQsxKkSsc1XEkw3tDTQFpy";
        static PK_STR: &'static str = "039b6347398505f5ec93826dc61c19f47c66c0283ee9be980e29ce325a0f4679ef";
        static PK_STR_U: &'static str = "\
            04\
            9b6347398505f5ec93826dc61c19f47c66c0283ee9be980e29ce325a0f4679ef\
            87288ed73ce47fc4f5c79d19ebfa57da7cff3aff6e819e4ee971d86b5e61875d\
        ";
        static PK_BYTES: [u8; 33] = [
            0x03,
            0x9b, 0x63, 0x47, 0x39, 0x85, 0x05, 0xf5, 0xec,
            0x93, 0x82, 0x6d, 0xc6, 0x1c, 0x19, 0xf4, 0x7c,
            0x66, 0xc0, 0x28, 0x3e, 0xe9, 0xbe, 0x98, 0x0e,
            0x29, 0xce, 0x32, 0x5a, 0x0f, 0x46, 0x79, 0xef,
        ];
        static PK_BYTES_U: [u8; 65] = [
            0x04,
            0x9b, 0x63, 0x47, 0x39, 0x85, 0x05, 0xf5, 0xec,
            0x93, 0x82, 0x6d, 0xc6, 0x1c, 0x19, 0xf4, 0x7c,
            0x66, 0xc0, 0x28, 0x3e, 0xe9, 0xbe, 0x98, 0x0e,
            0x29, 0xce, 0x32, 0x5a, 0x0f, 0x46, 0x79, 0xef,
            0x87, 0x28, 0x8e, 0xd7, 0x3c, 0xe4, 0x7f, 0xc4,
            0xf5, 0xc7, 0x9d, 0x19, 0xeb, 0xfa, 0x57, 0xda,
            0x7c, 0xff, 0x3a, 0xff, 0x6e, 0x81, 0x9e, 0x4e,
            0xe9, 0x71, 0xd8, 0x6b, 0x5e, 0x61, 0x87, 0x5d,
        ];

        let s = Secp256k1::new();
        let sk = PrivateKey::from_str(&KEY_WIF).unwrap();
        let pk = PublicKey::from_private_key(&s, &sk);
        let pk_u = PublicKey {
            key: pk.key,
            compressed: false,
        };

        assert_tokens(&sk, &[Token::BorrowedStr(KEY_WIF)]);
        assert_tokens(&pk.compact(), &[Token::BorrowedBytes(&PK_BYTES[..])]);
        assert_tokens(&pk.readable(), &[Token::BorrowedStr(PK_STR)]);
        assert_tokens(&pk_u.compact(), &[Token::BorrowedBytes(&PK_BYTES_U[..])]);
        assert_tokens(&pk_u.readable(), &[Token::BorrowedStr(PK_STR_U)]);
    }

    fn random_key(mut seed: u8) -> PublicKey {
        loop {
            let mut data = [0; 65];
            for byte in &mut data[..] {
                *byte = seed;
                // totally a rng
                seed = seed.wrapping_mul(41).wrapping_add(43);
            }
            if data[0] % 2 == 0 {
                data[0] = 4;
                if let Ok(key) = PublicKey::from_slice(&data[..]) {
                    return key;
                }
            } else {
                data[0] = 2 + (data[0] >> 7);
                if let Ok(key) = PublicKey::from_slice(&data[..33]) {
                    return key;
                }
            }
        }
    }

    #[test]
    fn pubkey_read_write() {
        const N_KEYS: usize = 20;
        let keys: Vec<_> = (0..N_KEYS).map(|i| random_key(i as u8)).collect();

        let mut v = vec![];
        for k in &keys {
            k.write_into(&mut v).expect("writing into vec");
        }

        let mut dec_keys = vec![];
        let mut cursor = io::Cursor::new(&v);
        for _ in 0..N_KEYS {
            dec_keys.push(PublicKey::read_from(&mut cursor).expect("reading from vec"));
        }

        assert_eq!(keys, dec_keys);

        // sanity checks
        assert!(PublicKey::read_from(&mut cursor).is_err());
        assert!(PublicKey::read_from(io::Cursor::new(&[])).is_err());
        assert!(PublicKey::read_from(io::Cursor::new(&[0; 33][..])).is_err());
        assert!(PublicKey::read_from(io::Cursor::new(&[2; 32][..])).is_err());
        assert!(PublicKey::read_from(io::Cursor::new(&[0; 65][..])).is_err());
        assert!(PublicKey::read_from(io::Cursor::new(&[4; 64][..])).is_err());
    }
}